Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production...Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.展开更多
The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers...The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).展开更多
Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC a...Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 1 lth to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 1 lth to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r^2=0.55-0.79, P〈0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.展开更多
Soil productivity(SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield.However,there have been difficulties in estimating values of SPs for soils afte...Soil productivity(SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield.However,there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients,leading to erroneous estimation.The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments,and to evaluate the steady SP value(which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations.The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil,Zhengzhou of Henan Province with fluvo-aquic soil,and Gongzhuling of Jilin Province with black soils,China.Soils were collected after long-term field fertilization treatments of no fertilizer(control;CK-F),chemical fertilizer(NPK-F),and combined chemical fertilizer with manure(NPKM-F).The soils received either no fertilizer(F0) or chemical fertilizer(F1) for 3-6 cropping seasons in pots,which include CK-P(control;no fertilizer from long-term field experiments for pot experiments),NPK-P(chemical fertilizer from long-term field experiments for pot experiments),and NPKM-P(combined chemical and organic fertilizers from long-term field experiments for pot experiments).The yield data were used to calculate SP values.The initial SP values were high,but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils.The steady SP values in the third cropping season from CK-P,NPK-P,and NPKM-P treatments were 37.7,44.1,and 50.0% in the paddy soil,34.2,38.1,and 50.0% in the fluvo-aquic soil,with the highest value observed in the NPKM-P treatment for all soils.However,further research is required in the black soils to incorporate more than three cropping seasons.The partial least squares path mode(PLS-PM) showed that total N(nitrogen) and C/N ratio(the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils.These findings confirm the significance of the incorporation of manure for attaining high soil productivity.Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.展开更多
A nonlinear Schrödinger equation for short ultraintense laser pulses in an underdense plasma has been discussed,and three types explicit exact solutions of this equation are obtained by using analytical method.
we present a few unique animal-like fractal patterns in ionized-clnster-beam deposited fullerene-tetracyanoquinodimethane thin films.The fractal patterns consisting of animal-like aggregates such as"fishes"a...we present a few unique animal-like fractal patterns in ionized-clnster-beam deposited fullerene-tetracyanoquinodimethane thin films.The fractal patterns consisting of animal-like aggregates such as"fishes"and"quasi-seahorses"have been characterized by transnission electron microscopy.The results indicate that the sall aggregates ofthe aninmal-like body are composed of many single crystals whose crystalline directions are generally different.The formation of tle fractal patterns can be attributed to the cluster-diffusion-lirnited aggregation.展开更多
基金supported by the National 973 Program of China (2011CB100501)the National 863 Program of China(2013AA102901)+1 种基金the Special Fund for Agro-Scientific Research in the Public Interest, China (201203077)the Science and Technology Project for Grain Production, China (2011BAD16B15)
文摘Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P〈0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM〉NPKM〉NPK〉NPKS, indicating that organic manure combined with chemical fertilizers (I.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.
基金Financial supports are from the National Natural Science Foundation of China(41571298,41620104006)the Special Fund for Agro-scientific Research in the Public Interest,China(201203030,201303126)the National Key Technologies R&D Program of China(2012BAD14B04)
文摘The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).
基金Financial supports are from the National Basic Research Program of China (2011CB100501)the National Natural Science Foundation of China (41171239, 41371247)the Project of Aid of Science and Technology in Xinjiang, China (201191140)
文摘Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 1 lth to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 1 lth to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r^2=0.55-0.79, P〈0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.
基金supported by the National Key Research and Development Program of China (2016YFD0300901 and 2016YFD0200101)the Fundamental Research Funds for Central Non-profit Scientific Institution of China (161032019035 and 161032019020)the National Basic Research Program of China (973 Program) (2011CB100501)
文摘Soil productivity(SP) without external fertilization influence is an important indicator for the capacity of a soil to support crop yield.However,there have been difficulties in estimating values of SPs for soils after various long-term field treatments because the treatment without external fertilization is used but is depleted in soil nutrients,leading to erroneous estimation.The objectives of this study were to estimate the change of SP across different cropping seasons using pot experiments,and to evaluate the steady SP value(which is defined by the basal contribution of soil itself to crop yield) after various longterm fertilization treatments in soils at different geographical locations.The pot experiments were conducted in Jinxian of Jiangxi Province with paddy soil,Zhengzhou of Henan Province with fluvo-aquic soil,and Gongzhuling of Jilin Province with black soils,China.Soils were collected after long-term field fertilization treatments of no fertilizer(control;CK-F),chemical fertilizer(NPK-F),and combined chemical fertilizer with manure(NPKM-F).The soils received either no fertilizer(F0) or chemical fertilizer(F1) for 3-6 cropping seasons in pots,which include CK-P(control;no fertilizer from long-term field experiments for pot experiments),NPK-P(chemical fertilizer from long-term field experiments for pot experiments),and NPKM-P(combined chemical and organic fertilizers from long-term field experiments for pot experiments).The yield data were used to calculate SP values.The initial SP values were high,but decreased rapidly until a relatively steady SP was achieved at or after about three cropping seasons for paddy and fluvo-aquic soils.The steady SP values in the third cropping season from CK-P,NPK-P,and NPKM-P treatments were 37.7,44.1,and 50.0% in the paddy soil,34.2,38.1,and 50.0% in the fluvo-aquic soil,with the highest value observed in the NPKM-P treatment for all soils.However,further research is required in the black soils to incorporate more than three cropping seasons.The partial least squares path mode(PLS-PM) showed that total N(nitrogen) and C/N ratio(the ratio of soil organic carbon and total N) had positive effects on the steady SP for all three soils.These findings confirm the significance of the incorporation of manure for attaining high soil productivity.Regulation of the soil C/N ratio was the other main factor for steady SP through fertilization management.
基金Supported by the Science Foundation of Chinese Academy of Engineering Physics No.9504054the Postdoctoral Science Foundation of China。
文摘A nonlinear Schrödinger equation for short ultraintense laser pulses in an underdense plasma has been discussed,and three types explicit exact solutions of this equation are obtained by using analytical method.
基金Supported in part by the Doctoral Programme Foundation of Higli Education Commissionthe National Natural Science Foundation of China.
文摘we present a few unique animal-like fractal patterns in ionized-clnster-beam deposited fullerene-tetracyanoquinodimethane thin films.The fractal patterns consisting of animal-like aggregates such as"fishes"and"quasi-seahorses"have been characterized by transnission electron microscopy.The results indicate that the sall aggregates ofthe aninmal-like body are composed of many single crystals whose crystalline directions are generally different.The formation of tle fractal patterns can be attributed to the cluster-diffusion-lirnited aggregation.