Water deficit is one of the main limiting factors for apple growth and production.Root architecture plays an important role in drought tolerance of plants.However,little is known about the molecular basis of root syst...Water deficit is one of the main limiting factors for apple growth and production.Root architecture plays an important role in drought tolerance of plants.However,little is known about the molecular basis of root system in apple trees under drought.In this study,we compared root morphology of two widely used rootstocks of apple(R3 and Malus sieversii)under drought.Our results suggested that M.sieversii is more tolerant to drought than R3,since M.sieversii had a higher ratio of root to shoot as well as root hydraulic conductivity under long-term drought conditions.We then performed whole-genome transcriptomic analysis to figure out the molecular basis of root responses in M.sieversii under drought.It was found that genes involved in transcription regulation,signaling or biosynthesis of hormones,and oxidative stress were differentially expressed under drought.Consistent with the gene expression profile,roots of M.sieversii had higher activities of peroxidase(POD)and superoxide dismutase(SOD)under drought,as well as higher content of abscisic acid(ABA)and lower content of auxin.Taken together,our results revealed the physiological and transcriptomic analyses of M.sieversii roots in response to drought.展开更多
The plant hydraulic network faces several challenges under drought stress. Hydraulic conductivity is one of the major indicators of the hydraulic network’s response to drought stress. Here, we review our current unde...The plant hydraulic network faces several challenges under drought stress. Hydraulic conductivity is one of the major indicators of the hydraulic network’s response to drought stress. Here, we review our current understanding of the factors directly affecting hydraulic conductivity and the methods used to measure it.展开更多
基金supported by the National Natural Science Foundation of China (31622049 and 31572106)the Key Program of the National Natural Science Foundation of China (31330068)+1 种基金the Program of Sci-Tech Star of Shaanxi, China (2015kjxx14)the startup funding (Z111021402) from Northwest A&F University to Guan Qingmei who is also supported by the Thousand Talents Plan of China
文摘Water deficit is one of the main limiting factors for apple growth and production.Root architecture plays an important role in drought tolerance of plants.However,little is known about the molecular basis of root system in apple trees under drought.In this study,we compared root morphology of two widely used rootstocks of apple(R3 and Malus sieversii)under drought.Our results suggested that M.sieversii is more tolerant to drought than R3,since M.sieversii had a higher ratio of root to shoot as well as root hydraulic conductivity under long-term drought conditions.We then performed whole-genome transcriptomic analysis to figure out the molecular basis of root responses in M.sieversii under drought.It was found that genes involved in transcription regulation,signaling or biosynthesis of hormones,and oxidative stress were differentially expressed under drought.Consistent with the gene expression profile,roots of M.sieversii had higher activities of peroxidase(POD)and superoxide dismutase(SOD)under drought,as well as higher content of abscisic acid(ABA)and lower content of auxin.Taken together,our results revealed the physiological and transcriptomic analyses of M.sieversii roots in response to drought.
基金supported by the National Natural Science Foundation of China(31622049 and 31660565)supported by the Thousand Talents Plan of China。
文摘The plant hydraulic network faces several challenges under drought stress. Hydraulic conductivity is one of the major indicators of the hydraulic network’s response to drought stress. Here, we review our current understanding of the factors directly affecting hydraulic conductivity and the methods used to measure it.