Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of...Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.展开更多
From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development a...From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development are determined, and the evaluation index system of geological sweetspot for CBM development is established. On this basis, the fuzzy pattern recognition(FPR) model of geological sweetspot for CBM development is built. The model is applied to evaluate four units of No.3 Coal Seam in the Fanzhuang Block, southern Qinshui Basin, China. The evaluation results are consistent with the actual development effect and the existing research results, which verifies the rationality and reliability of the FPR model. The research shows that the proposed FPR model of geological sweetspot for CBM development does not involve parameter weighting which leads to uncertainties in the results of the conventional models such as analytic hierarchy process and multi-level fuzzy synthesis judgment, and features a simple computation without the construction of multi-level judgment matrix. The FPR model provides reliable results to support the efficient development of CBM.展开更多
基金Supported by the Project of National Natural Science Foundation of China(52234002,42230814)。
文摘Aiming at the problems of large load of rotation drive system,low efficiency of torque transmission and high cost for operation and maintenance of liner steering drilling system for the horizontal well,a new method of liner differential rotary drilling with double tubular strings in the horizontal well is proposed.The technical principle of this method is revealed,supporting tools such as the differential rotation transducer,composite rotary steering system and the hanger are designed,and technological process is optimized.A tool face control technique of steering drilling assembly is proposed and the calculation model of extension limit of liner differential rotary drilling with double tubular strings in horizontal well is established.These results show that the liner differential rotary drilling with double tubular strings is equipped with measurement while drilling(MWD)and positive displacement motor(PDM),and directional drilling of horizontal well is realized by adjusting rotary speed of drill pipe to control the tool face of PDM.Based on the engineering case of deep coalbed methane horizontal well in the eastern margin of Ordos Basin,the extension limit of horizontal drilling with double tubular strings is calculated.Compared with the conventional liner drilling method,the liner differential rotary drilling with double tubular strings increases the extension limit value of horizontal well significantly.The research findings provide useful reference for the integrated design and control of liner completion and drilling of horizontal wells.
基金Key Project of China National Natural Science Foundation (42230814,52234002)Research Program Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences),Ministry of Education (TPR-2022-17)。
文摘From the perspective of geological zone selection for coalbed methane(CBM) development, the evaluation parameters(covering geological conditions and production conditions) of geological sweetspot for CBM development are determined, and the evaluation index system of geological sweetspot for CBM development is established. On this basis, the fuzzy pattern recognition(FPR) model of geological sweetspot for CBM development is built. The model is applied to evaluate four units of No.3 Coal Seam in the Fanzhuang Block, southern Qinshui Basin, China. The evaluation results are consistent with the actual development effect and the existing research results, which verifies the rationality and reliability of the FPR model. The research shows that the proposed FPR model of geological sweetspot for CBM development does not involve parameter weighting which leads to uncertainties in the results of the conventional models such as analytic hierarchy process and multi-level fuzzy synthesis judgment, and features a simple computation without the construction of multi-level judgment matrix. The FPR model provides reliable results to support the efficient development of CBM.