BACKGROUND Carpal tunnel syndrome(CTS)has been associated with gout and type 2 diabetes mellitus(T2DM).However,due to insufficient clinical understanding of goutrelated CTS and reliance on the diagnostic importance of...BACKGROUND Carpal tunnel syndrome(CTS)has been associated with gout and type 2 diabetes mellitus(T2DM).However,due to insufficient clinical understanding of goutrelated CTS and reliance on the diagnostic importance of elevated serum uric acid levels,such cases are prone to missed diagnosis,misdiagnosis,and delayed treatment.In addition,the effect of T2DM on gout-induced carpal tunnel syndrome has not been reported.CASE SUMMARY Herein,we present an unusual case of CTS and motor dysfunction caused by miliary tophaceous gout and T2DM.The patient presented to the hand and foot clinic with paresthesia of the fingers of both hands,especially at night.The patient was diagnosed with type 2 diabetes a month ago.Ultrasonography revealed bilateral transverse carpal ligament thickening with median nerve compression during hospitalization.The patient was successfully treated with carpal tunnel decompression and tendon release.The postoperative pathological examination revealed typical gout nodules.This case suggests that the presence of T2DM could accelerate tophi formation and worsen CTS symptoms,although no definitive proof in this regard has been described previously.CONCLUSION Tophi formation may most likely cause the co-occurrence of CTS and flexor dysfunction in gout and incipient diabetes patients.展开更多
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynami...Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.展开更多
Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke,and avoids the complications of general hypothermia.However,the mechanisms by which selective brain hypothermia affects...Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke,and avoids the complications of general hypothermia.However,the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown.In this study,we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein,a key factor in the mitochondrial fission system,during focal cerebral ischemia/reperfusion injury.Sprague-Dawley rats were divided into four groups.In the sham group,the carotid arteries were exposed only.In the other three groups,middle cerebral artery occlusion was performed using the intraluminal filament technique.After 2 hours of occlusion,the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group.Saline,at 4℃ and 37℃,were perfused through the carotid artery in the hypothermia and normothermia groups,respectively,followed by restoration of blood flow.Neurological function was assessed with the Zea Longa 5-point scoring method.Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining,and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining.Fis1 and cytosolic cytochrome c levels were assessed by western blot assay.Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction.Mitochondrial ultrastructure was evaluated by transmission electron microscopy.Compared with the sham group,apoptosis,Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups.These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group.These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis,thereby ameliorating focal cerebral ischemia/reperfusion injury in rats.Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No.2019008).展开更多
Introduction Jiangmen Underground Neutrino Observation(JUNO)focuses on determining neutrino mass hierarchy and other physical purposes.The central detector is one of the keys to the JUNO.The main structure of the cent...Introduction Jiangmen Underground Neutrino Observation(JUNO)focuses on determining neutrino mass hierarchy and other physical purposes.The central detector is one of the keys to the JUNO.The main structure of the central detector is an acrylic spherical container with a diameter of 35.4 m,which will be the largest acrylic spherical vessel in the world.Its construction will inevitably face many great challenges and difficulties.Method The thermoforming process of large acrylic spherical panel is introduced,which is a very important step in panel production.The effect of temperature on the curvature of panel during thermoforming is discussed.The thermal deformation of panel in thermoforming process is analyzed by finite element method.The bending experiment and curvature measurement are carried out,and the influence of deformation of the panel under gravity on the curvature of the panel is analyzed.Results The current thermoforming process makes the curvature of panel smaller than that of mold.The measurement results show that the curvatures are different due to the influence of gravity when the panel is placed on the mold or vertically.Some suggestions for improving the shape of spherical panels are put forward.In the thermoforming process,the temperature of the concave-convex surfaces of the panel should be controlled at the same level as far as possible.Another feasible method is to increase the radius of the forming mold to obtain a spherical panel with designed radius.展开更多
基金Supported by Science and Technology Bureau of Jining,No.2021YXNS115.
文摘BACKGROUND Carpal tunnel syndrome(CTS)has been associated with gout and type 2 diabetes mellitus(T2DM).However,due to insufficient clinical understanding of goutrelated CTS and reliance on the diagnostic importance of elevated serum uric acid levels,such cases are prone to missed diagnosis,misdiagnosis,and delayed treatment.In addition,the effect of T2DM on gout-induced carpal tunnel syndrome has not been reported.CASE SUMMARY Herein,we present an unusual case of CTS and motor dysfunction caused by miliary tophaceous gout and T2DM.The patient presented to the hand and foot clinic with paresthesia of the fingers of both hands,especially at night.The patient was diagnosed with type 2 diabetes a month ago.Ultrasonography revealed bilateral transverse carpal ligament thickening with median nerve compression during hospitalization.The patient was successfully treated with carpal tunnel decompression and tendon release.The postoperative pathological examination revealed typical gout nodules.This case suggests that the presence of T2DM could accelerate tophi formation and worsen CTS symptoms,although no definitive proof in this regard has been described previously.CONCLUSION Tophi formation may most likely cause the co-occurrence of CTS and flexor dysfunction in gout and incipient diabetes patients.
基金supported by the Natural Science Foundation of Shandong Province of China,No.ZR2015HM023a grant from the Science and Technology Plan Project of Shinan District of Qingdao City of China,No.2016-3-029-YY
文摘Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.
基金supported by the Natural Science Foundation of Shandong Province of China,No.ZR2015HM023(to MSW)the Science and Technology Plan Project of Qingdao City of China,No.19-6-1-50-nsh(to MSW)
文摘Selective brain hypothermia is considered an effective treatment for neuronal injury after stroke,and avoids the complications of general hypothermia.However,the mechanisms by which selective brain hypothermia affects mitochondrial fission remain unknown.In this study,we investigated the effect of selective brain hypothermia on the expression of fission 1 (Fis1) protein,a key factor in the mitochondrial fission system,during focal cerebral ischemia/reperfusion injury.Sprague-Dawley rats were divided into four groups.In the sham group,the carotid arteries were exposed only.In the other three groups,middle cerebral artery occlusion was performed using the intraluminal filament technique.After 2 hours of occlusion,the filament was slowly removed to allow blood reperfusion in the ischemia/reperfusion group.Saline,at 4℃ and 37℃,were perfused through the carotid artery in the hypothermia and normothermia groups,respectively,followed by restoration of blood flow.Neurological function was assessed with the Zea Longa 5-point scoring method.Cerebral infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride staining,and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining.Fis1 and cytosolic cytochrome c levels were assessed by western blot assay.Fis1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction.Mitochondrial ultrastructure was evaluated by transmission electron microscopy.Compared with the sham group,apoptosis,Fis1 protein and mRNA expression and cytosolic cytochrome c levels in the cortical ischemic penumbra and cerebral infarct volume were increased after reperfusion in the other three groups.These changes caused by cerebral ischemia/reperfusion were inhibited in the hypothermia group compared with the normothermia group.These findings show that selective brain hypothermia inhibits Fis1 expression and reduces apoptosis,thereby ameliorating focal cerebral ischemia/reperfusion injury in rats.Experiments were authorized by the Ethics Committee of Qingdao Municipal Hospital of China (approval No.2019008).
基金This work has been supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA10010200)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.292020000087).
文摘Introduction Jiangmen Underground Neutrino Observation(JUNO)focuses on determining neutrino mass hierarchy and other physical purposes.The central detector is one of the keys to the JUNO.The main structure of the central detector is an acrylic spherical container with a diameter of 35.4 m,which will be the largest acrylic spherical vessel in the world.Its construction will inevitably face many great challenges and difficulties.Method The thermoforming process of large acrylic spherical panel is introduced,which is a very important step in panel production.The effect of temperature on the curvature of panel during thermoforming is discussed.The thermal deformation of panel in thermoforming process is analyzed by finite element method.The bending experiment and curvature measurement are carried out,and the influence of deformation of the panel under gravity on the curvature of the panel is analyzed.Results The current thermoforming process makes the curvature of panel smaller than that of mold.The measurement results show that the curvatures are different due to the influence of gravity when the panel is placed on the mold or vertically.Some suggestions for improving the shape of spherical panels are put forward.In the thermoforming process,the temperature of the concave-convex surfaces of the panel should be controlled at the same level as far as possible.Another feasible method is to increase the radius of the forming mold to obtain a spherical panel with designed radius.