期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Bayesian multi-model inference methodology for imprecise momentindependent global sensitivity analysis of rock structures
1
作者 Akshay Kumar gaurav tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期840-859,共20页
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du... Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully. 展开更多
关键词 Bayesian inference Multi-model inference Statistical uncertainty Global sensitivity analysis(GSA) Borgonovo’s indices Limited data
下载PDF
Assessment of the ballistic response of honeycomb sandwich structures subjected to offset and normal impact
2
作者 Nikhil Khaire gaurav tiwari +1 位作者 Vivek Patel M.A.Iqbal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期56-73,共18页
In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gu... In the present study,experimental and numerical investigations were carried out to examine the behavior of sandwich panels with honeycomb cores.The high velocity impact tests were carried out using a compressed air gun.A sharp conical nosed projectile was impacted normally and with some offset distance(20 mm and 40 mm).The deformation,failure mode and energy dissipation characteristics were obtained for both kinds of loading.Moreover,the explicit solver was run in Abaqus to create the finite element model.The numerically obtained test results were compared with the experimental to check the accuracy of the modelling.The numerical result was further employed to obtain strain energy dissipation in each element by externally running user-defined code in Abaqus.Furthermore,the influence of inscribe circle diameter and cell wall and face sheet thickness on the energy dissipation,deformation and failure mode was examined.The result found that ballistic resistance and deformation were higher against offset impact compared to the normal impact loading.Sandwich panel impacted at 40 mm offset distance required 3 m/s and 1.9 m/s more velocity than 0 and 20 mm offset distance.Also,increasing the face sheet and wall thickness had a positive impact on the ballistic resistance in terms of a higher ballistic limit and energy absorption.However,inscribe circle diameter had a negative influence on the ballistic resistance.Also,the geometrical parameters of the sandwich structure had a significant influence on the energy dissipation in the different deformation directions.The energy dissipation in plastic work was highest for circumferential direction,regardless of impact condition followed by tangential,radial and axial directions. 展开更多
关键词 Honeycomb sandwich structure Offset impact Energy dissipation characteristic Deformation and failure mode Geometry effect
下载PDF
Jackknife based generalized resampling reliability approach for rock slopes and tunnels stability analyses with limited data:Theory and applications 被引量:2
3
作者 Akshay Kumar gaurav tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期714-730,共17页
An efficient resampling reliability approach was developed to consider the effect of statistical uncertainties in input properties arising due to insufficient data when estimating the reliability of rock slopes and tu... An efficient resampling reliability approach was developed to consider the effect of statistical uncertainties in input properties arising due to insufficient data when estimating the reliability of rock slopes and tunnels.This approach considers the effect of uncertainties in both distribution parameters(mean and standard deviation)and types of input properties.Further,the approach was generalized to make it capable of analyzing complex problems with explicit/implicit performance functions(PFs),single/multiple PFs,and correlated/non-correlated input properties.It couples resampling statistical tool,i.e.jackknife,with advanced reliability tools like Latin hypercube sampling(LHS),Sobol’s global sensitivity,moving least square-response surface method(MLS-RSM),and Nataf’s transformation.The developed approach was demonstrated for four cases encompassing different types.Results were compared with a recently developed bootstrap-based resampling reliability approach.The results show that the approach is accurate and significantly efficient compared with the bootstrap-based approach.The proposed approach reflects the effect of statistical uncertainties of input properties by estimating distributions/confidence intervals of reliability index/probability of failure(s)instead of their fixed-point estimates.Further,sufficiently accurate results were obtained by considering uncertainties in distribution parameters only and ignoring those in distribution types. 展开更多
关键词 Statistical uncertainty Resampling reliability Moving least square response surface(MLSRSM) Sobol’s global sensitivity Correlation coefficient
下载PDF
Rate-dependent mechanical behavior of jointed rock with an impersistent joint under different infill conditions 被引量:2
4
作者 Sachin Kumar gaurav tiwari +1 位作者 Venkitanarayanan Parameswaran Arghya Das 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1380-1393,共14页
Transition in the rate-dependent mechanical response of rock was investigated due to the presence of impersistent joint with different infill conditions.Four types of samples,i.e.intact,jointed with no grouting,jointe... Transition in the rate-dependent mechanical response of rock was investigated due to the presence of impersistent joint with different infill conditions.Four types of samples,i.e.intact,jointed with no grouting,jointed and grouted with cement,and jointed and grouted with epoxy,were fabricated using model material.A series of dynamic split Hopkinson pressure bar(SHPB) tests was conducted on prepared samples with strain rates varying between 53-130 salong with static uniaxial compression tests(10s).Progression of fracture/failure along samples was monitored using high-speed imaging and digital image correlation(DIC).Strength was observed to be significantly lower for jointed samples as compared to intact samples.However,the increasing trend of strength with strain rates remained similar for all types of samples.Epoxy was observed to be a better grout due to greater improvement in the strength of epoxy grouted jointed samples than cement grouted samples under both static and dynamic conditions.Significant changes were observed in fracture behavior(initiation,pattern and mechanism)with strain rate for intact and jointed unfilled/grouted samples.Fracturing was dominated by shear and tensile cracks at high strain rates compared to tensile cracks at low strain rates in all samples.Unlike static loading conditions,the location of cracks initiation shifts away from joint tips with increasing strain rate and depending upon existing infill conditions(unfilled/grouted). 展开更多
关键词 Jointed rocks Grouted joint Dynamic loading Strain rates
下载PDF
Reliability assessment of deep excavations in spatially random cohesion weakening friction strengthening massive rocks:Application to nuclear repositories
5
作者 Akshay Kumar gaurav tiwari 《Underground Space》 SCIE EI CSCD 2023年第6期48-73,共26页
An augmented methodology is developed to estimate the reliability of deep excavations along spatially variable massive rock masses using the cohesion weakening friction strengthening(CWFS)model.Sensitive parameters of... An augmented methodology is developed to estimate the reliability of deep excavations along spatially variable massive rock masses using the cohesion weakening friction strengthening(CWFS)model.Sensitive parameters of the CWFS model were initially identified using Sobol’s global sensitivity analysis based on their influence on the displacements and excavation damage zone around excavations.The probability of failure was estimated by performing Mont–Carlo Simulations on random finite difference models of excavations generated via MATLAB-FLAC2D coupling,considering the spatial variation of these sensitive parameters.Spatial variation was modeled by generating anisotropic random fields of sensitive CWFS parameters via the recently developed Fourier series method and updated correlations suggested by Walton(2019).The proposed methodology was demonstrated for a proposed deep nuclear waste repository to be located in Canada.Results from the developed methodology were systematically compared with those of traditional reliability(ignoring spatial variation)and deterministic methods(ignoring uncertainty).Although the developed methodology was computationally complex,it was judged to be the most realistic due to the realistic consideration of heterogeneous distributions of rock properties.Traditional methodologies underestimate/overestimate the excavation performance due to negligence of uncertainty and spatial variability.Finally,a parametric analysis was performed using developed methodology by varying the initial friction angle,scale of fluctuations(SOFs)and dilation angle.The effect of initial friction angle was observed to be more pronounced on the probability of failures as compared to SOFs and dilation angle.Similar observations were made related to the excavation damage zone(EDZ)development quantified using yield area ratio. 展开更多
关键词 Deep excavations Brittle failures CWFS model Sobol’s sensitivity Moving least square response surface Fourier series random field
下载PDF
Review of the crushing response of collapsible tubular structures
6
作者 Vivek PATEL gaurav tiwari Ravikumar DUMPALA 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第3期438-474,共37页
Studies on determining and analyzing the crushing response of tubular structures are of significant interest,primarily due to their relation to safety.Several aspects of tubular structures,such as geometry,material,co... Studies on determining and analyzing the crushing response of tubular structures are of significant interest,primarily due to their relation to safety.Several aspects of tubular structures,such as geometry,material,configuration,and hybrid structure,have been used as criteria for evaluation.In this review,a comprehensive analysis of the important findings of extensive research on understanding the crushing response of thin-walled tubular structures is presented.Advancements in thin-walled structures,including multi-cell tube,honeycomb and foam-filled,multi wall,and functionally graded thickness tubes,are also discussed,focusing on their energy absorption ability.An extensive review of experimentation and numerical analysis used to extract the deformation behavior of materials,such as aluminum and steel,against static and dynamic loadings are also provided.Several tube shapes,such as tubes of uniform and nonuniform(tapered)cross sections of circular,square,and rectangular shapes,have been used in different studies to identify their efficacy.Apart from geometric and loading parameters,the effects of fabrication process,heat treatment,and triggering mechanism on initiating plastic deformation,such as cutouts and grooves,on the surface of tubular structures are discussed. 展开更多
关键词 monolithic structure CRASHWORTHINESS energy absorber static and dynamic loadings multicellular tube structure filled tube
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部