期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Co-and N-doped carbon nanotubes with hierarchical pores derived from metal-organic nanotubes for oxygen reduction reaction 被引量:2
1
作者 Xuewan Wang Xiuan Xi +5 位作者 ge huo Chenyu Xu Pengfei Sui Renfei Feng Xian-Zhu Fu Jing-Li Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期49-55,I0002,共8页
Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nan... Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm^(-2) at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol. 展开更多
关键词 Folic acid Metal–organic nanotube Carbon nanotube In situ doping Oxygen reduction
下载PDF
γ-MnO_(2) nanorod-assembled hierarchical micro-spheres with oxygen vacancies to enhance electrocatalytic performance toward the oxygen reduction reaction for aluminum-air batteries 被引量:2
2
作者 ge huo Xue-Wan Wang +6 位作者 Zhi-Bin Zhang Zhongxin Song Xiao-Min Kang Ming-Xing Chen Qi Wang Xian-Zhu Fu Jing-Li Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期81-89,共9页
γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich ox... γ-MnO2 nanorod-assembled hierarchical micro-spheres with abundant oxygen defects are synthesized by a simple thermal treatment approach as oxygen reduction electrocatalysts for Al(aluminum)-air batteries. The rich oxygen vacancies on the surface of γ-MnO2 are verified by morphology, structure,electron paramagnetic resonance(EPR) and X-ray photoelectron spectroscopy(XPS) results. The oxygen reduction reaction(ORR) electrocatalytic activity of γ-MnO2 is significantly improved by the incoming oxygen vacancies. The γ-MnO2 nanorod-assembled hierarchical micro-spheres calcined under 300 °C in Ar atmosphere show the best ORR performance. The primary Al-air batteries using γ-MnO2 catalysts as the cathode, which demonstrates excellent peal power density of 318 m W cm^(-2) when applying theγ-MnO2 catalysts with optimal amount of oxygen vacancies. 展开更多
关键词 γ-MnO2 Oxygen vacancy ORR electrocatalysts Al-air battery
下载PDF
Hierarchical lichee-like Fe_(3)O_(4) assemblies and their high heating efficiency in magnetic hyperthermia
3
作者 Wen-Yu Li Wen-Tao Li +5 位作者 Bang-Quan Li Li-Juan Dong Tian-Hua Meng ge huo Gong-Ying Liang Xue-Gang Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期394-399,共6页
A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydroth... A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydrothermal method.The crystal structure of Fe_(3)O_(4) assemblies are characterized by x-ray diffraction,scanning electron microscopy,and transmission electron microscopy.Moreover,the prepared Fe_(3)O_(4) assemblies are used as a magnetic heat treatment agent,and their heating efficiency is investigated.Compared to solid assembly,hollow lichee-like Fe_(3)O_(4) assembly exhibits a higher specific absorption rate of 116.53 W/g and a shorter heating time,which is ascribed to its higher saturation magnetization,larger initial particle size,and the unique hierarchical hollow structure.Furthermore,the magnetothermal effect is primarily attributed to Neel relaxation.Overall,we propose a facile and convenient approach to enhance the heating efficiency of magnetic nanoparticles by forming hollow hierarchical assemblies. 展开更多
关键词 magnetic hyperthermia heating efficiency hierarchical Fe_(3)O_(4)assemblies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部