The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contribut...The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.展开更多
Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-ter...Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product.展开更多
In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants...In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants have different characteristics,and a scientific and rational selection and optimization of plant species is needed.This paper proposes an optimized plant selection and configuration scheme for urban water ecological restoration based on the ecological characteristics and pollutant removal performance of wetland plants.It analyzes the diversity,removal mechanisms,and configuration modes of wetland plants,taking into account ecology,aesthetics,and cost-effectiveness,to provide scientific evidence for wetland plant configuration and support water environment management decision-making.展开更多
This work investigated the changes in properties of saliva-participating emulsions during different oral processing stages(the whole process from intake to swallowing was divided into five stages,i.e.,20%,40%,60%,80%a...This work investigated the changes in properties of saliva-participating emulsions during different oral processing stages(the whole process from intake to swallowing was divided into five stages,i.e.,20%,40%,60%,80%and 100%stage).The stewed pork with brown sauce was masticated and the emulsion was collected for the determination of emulsion stability,droplet size,ζ-potential,interfacial tension,and microstructure.The results showed that the emulsion stability increased gradually during the oral processing and reached the highest level near the swallowing point.The droplet size of emulsion showed a significant downward trend(P<0.05).Microstructure observations also found different degrees of reduction in fat droplets size at different stages of oral processing.In addition,theζ-potential of food boluses emulsion was decreased from-16.4 mV to-41.2 mV and the interfacial tension decreased by 52.6%before and after oral progressing.In conclusion,the oral processing of stewed pork with brown sauce was essentially a process in which fat was constantly emulsified,and saliva might act as an emulsifier.This study provides new insights on understanding the oral processing process and sensory changes of fat.展开更多
Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-val...Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.展开更多
Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on t...Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.展开更多
6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and tim...6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.展开更多
Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and she...Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.展开更多
BACKGROUND The pathophysiological characteristics of severe pneumonia complicated by respiratory failure comprise pulmonary parenchymal changes leading to ventilation imbalance,alveolar capillary injury,pulmonary edem...BACKGROUND The pathophysiological characteristics of severe pneumonia complicated by respiratory failure comprise pulmonary parenchymal changes leading to ventilation imbalance,alveolar capillary injury,pulmonary edema,refractory hypoxemia,and reduced lung compliance.Prolonged hypoxia can cause acid-base balance disorder,peripheral circulatory failure,blood-pressure reduction,arrhythmia,and other adverse consequences.AIM To investigate sequential mechanical ventilation’s effect on severe pneumonia complicated by respiratory failure.METHODS We selected 108 patients with severe pneumonia complicated by respiratory failure who underwent mechanical ventilation between January 2018 and September 2020 at the Luhe Hospital’s Intensive Care Unit and divided them into sequential and regular groups according to a randomized trial,with each group comprising 54 patients.The sequential group received invasive and non-invasive sequential mechanical ventilation,whereas the regular group received invasive mechanical ventilation.Blood-gas parameters,hemodynamic parameters,respiratory mechanical parameters,inflammatory factors,and treatment outcomes were compared between the two groups before and after mechanical-ventilation treatment.RESULTS The arterial oxygen partial pressure and stroke volume variation values of the sequential group at 24,48,and 72 h of treatment were higher than those of the conventional group(P<0.05).The carbon dioxide partial pressure value of the sequential group at 72 h of treatment and the Raw value of the treatment group at 24 and 48 h were lower than those of the conventional group(P<0.05).The pH value of the sequential group at 24 and 72 h of treatment,the central venous pressure value of the treatment at 24 h,and the Cst value of the treatment at 24 and 48 h were higher than those of the conventional group(P<0.05).The tidal volume in the sequential group at 24 h of treatment was higher than that in the conventional group(P<0.05),the measured values of interleukin-6 and tumor necrosis factor-αin the sequential group at 72 h of treatment were lower than those in the conventional group(P<0.05),and the total time of mechanical ventilation in the sequential group was shorter than that in the conventional group,with a statistically significant difference(P<0.05).CONCLUSION Treating severe pneumonia complicated by respiratory failure with sequential mechanical ventilation is more effective in improving respiratory system compliance,reducing inflammatory response,maintaining hemodynamic stability,and improving patient blood-gas levels;however,from this study’s perspective,it cannot reduce patient mortality.展开更多
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica...The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.展开更多
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of pr...Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.展开更多
Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with sever...Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tissue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continuation of our ongoing pursuit in mouse.展开更多
Lactobacillus species are non-spore-forming, gram-positive bacteria and lactic acid producing bacteria (LAPB) that naturally inhabit the human and animal gastrointestinal and mouth organs. The aim of this review was t...Lactobacillus species are non-spore-forming, gram-positive bacteria and lactic acid producing bacteria (LAPB) that naturally inhabit the human and animal gastrointestinal and mouth organs. The aim of this review was to evaluate the new progress regarding the use of Lactobacillus species as live delivery vectors, prevention, and treatment of pathogenic and metabolic diseases. Lactobacillus strains of probiotics have been extensively studied and have confirmed that they can absolutely improve performance as live delivery vectors, a treatment option of various diseases such as: Hemorrhagic cecal coccidiosis in young poultry, hypertension, avian flu, obesity, diabetes, Derzsy’s disease or parvovirus infection, human immunodeficiency virus infections, irritable bowel syndrome, gastrointestinal disorders, Fungal infections, vaginal eubiosis, fish and shellfish species diseases. We give you an idea about that Lactobacillus species have been proficient in preventing and treating both disorders in animal models and some are used for clinical trials. We present the most current studies on the use of Lactobacillus strains that had an impact on an effective immune response to a specific antigen because a variety of antigens have been expressed. Therefore Lactobacillus strains can be considered as good candidates because of its potential for diseases treatment and vaccine development as heterologous protein secretion to date.展开更多
We have developed Macadam’s theory to deal with RGB laser display, which can well describe the color gamut display system varying with the laser bandwidth. By calculating the volume of R¨osch–Macadam color soli...We have developed Macadam’s theory to deal with RGB laser display, which can well describe the color gamut display system varying with the laser bandwidth. By calculating the volume of R¨osch–Macadam color solid of laser display system under the Rec.2020 standard, we can obtain that the volume of chromatic stereoscopic at 30-nm laser spectral linewidth is about 90% of that at 1 nm laser spectral linewidth, which is important in laser display system to trade off the color gamut and the suppression of laser speckles. Moreover, we can also calculate the color gamut volume with different primary numbers and different primary wavelengths.展开更多
The production capability of a fermentation process is predominately determined by individual strains,which ultimately affected ultimately by interactions between the scale-dependent flow field developed within biorea...The production capability of a fermentation process is predominately determined by individual strains,which ultimately affected ultimately by interactions between the scale-dependent flow field developed within bioreactors and the physiological response of these strains.Interpreting these complicated interactions is key for better understanding the scale-up of the fermentation process.We review these two aspects and address progress in strategies for scaling up fermentation processes.A perspective on how to incorporate the multiomics big data into the scale-up strategy is presented to improve the design and operation of industrial fermentation processes.展开更多
OBJECTIVE To discover a small-molecule activator of ULK1 for Parkinson disease treatment and exploreits potential mechanisms.METHODS Candidate ULK1 activator was found by using structure-based design and high-through ...OBJECTIVE To discover a small-molecule activator of ULK1 for Parkinson disease treatment and exploreits potential mechanisms.METHODS Candidate ULK1 activator was found by using structure-based design and high-through put screening,then modified by chemical synthesis and screened by kinase and autophgic activities.The amino acid residues that key to the activation site of the best candidate ULK1 activator(BL-918) were determined by site-directed mutagenesis,as well as in vitro kinase assay,ADP-Glo kinase assay and surface plasmon resonance(SPR) analysis.The mechanisms of BL-918 induced cytoprotective autophagy were investigated by electron microscopy,fluorescence microscopy,Western blotting,co-immunoprecipitation assay,si RNA and GFP-LC3 plasmid transfections.The therapeutic effect of BL-918 was determined by MPTP-mouse model,including behavioral tests,the levels of dopamine and its derivatives,as well as immunofluorescence and Western blotting.The toxicity of BL-918 was assessed by blood sample analysis and hematoxylin-eosin staining.RESULTS We discovered a small molecule(BL-918) as a potent activator of ULK1 by structure-based drug design.Subsequently,some key amino acid residues(Arg18,Lys50,Asn86 and Tyr89) were found to be crucial to the binding pocket between ULK1 and BL-918,by site-directed mutagenesis.Moreover,we found that BL-918 could induce autophagy via the ULK complex in neuroblastoma SH-SY5Y cells.Intriguingly,this activator displayed a cytoprotective effect on MPP+-treated SH-SY5Y cells,as well as protected against MPTP-induced motor dysfunction and loss of dopaminergic neurons by targeting ULK1-modulated autophagy in mouse models of PD.CONCLUSION We discovered a novel ULK1 activator(BL-918) that potently activated ULK1.This activator could induce cytoprotective autophagy via the ULK1 complex in SH-SY5Y cells,and also exerted its neuroprotective effects by targeting ULK1-modulated autophagy in a MPTP-induced PD mouse model,which may serve as a candidate drug for future PD therapy.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFA0705601)the National Natural Science Foundation of China(No.U23A20122,52101267)the Key Science and Technology Special Project of Henan Province(No.201111311400).
文摘The severe degradation of electrochemical performance for lithium-ion batteries(LIBs)at low temperatures poses a significant challenge to their practical applications.Consequently,extensive efforts have been contributed to explore novel anode materials with high electronic conductivity and rapid Li^(+)diffusion kinetics for achieving favorable low-temperature performance of LIBs.Herein,we try to review the recent reports on the synthesis and characterizations of low-temperature anode materials.First,we summarize the underlying mechanisms responsible for the performance degradation of anode materials at subzero temperatures.Second,detailed discussions concerning the key pathways(boosting electronic conductivity,enhancing Li^(+)diffusion kinetics,and inhibiting lithium dendrite)for improving the low-temperature performance of anode materials are presented.Third,several commonly used low-temperature anode materials are briefly introduced.Fourth,recent progress in the engineering of these low-temperature anode materials is summarized in terms of structural design,morphology control,surface&interface modifications,and multiphase materials.Finally,the challenges that remain to be solved in the field of low-temperature anode materials are discussed.This review was organized to offer valuable insights and guidance for next-generation LIBs with excellent low-temperature electrochemical performance.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2024SHFZ074,ZDYF2024SHFZ072,ZDYF2022SHFZ299)the National Natural Science Foundation of China(22109035,22202053,52164028,52274297,22309037)+4 种基金the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20083,20084,21125,23035)the collaborative Innovation Center of Marine Science and Technology,Hainan University(XTCX2022HYC04,XTCX2022HYC05)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhyb2022-87,Qhys2022-174)the Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.23JK0439)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product.
基金2023 Beilin District Science and Technology Plan Project(Project No.GX2339)the 2024 Xi’an Science and Technology Plan Project(Project No.24GXFW0065).
文摘In urban water ecological restoration projects,the selection and configuration of wetland plants are crucial for water quality improvement,ecological diversity enhancement,and landscape beautification.Different plants have different characteristics,and a scientific and rational selection and optimization of plant species is needed.This paper proposes an optimized plant selection and configuration scheme for urban water ecological restoration based on the ecological characteristics and pollutant removal performance of wetland plants.It analyzes the diversity,removal mechanisms,and configuration modes of wetland plants,taking into account ecology,aesthetics,and cost-effectiveness,to provide scientific evidence for wetland plant configuration and support water environment management decision-making.
基金supported by the National Natural Science Foundation of China (31571861)the Liao Ning Revitalization Talents Program (XLYC1807100)the Open Foundation Program of Cuisine Science Key Laboratory of Sichuan Province (PRKX2020Z13)
文摘This work investigated the changes in properties of saliva-participating emulsions during different oral processing stages(the whole process from intake to swallowing was divided into five stages,i.e.,20%,40%,60%,80%and 100%stage).The stewed pork with brown sauce was masticated and the emulsion was collected for the determination of emulsion stability,droplet size,ζ-potential,interfacial tension,and microstructure.The results showed that the emulsion stability increased gradually during the oral processing and reached the highest level near the swallowing point.The droplet size of emulsion showed a significant downward trend(P<0.05).Microstructure observations also found different degrees of reduction in fat droplets size at different stages of oral processing.In addition,theζ-potential of food boluses emulsion was decreased from-16.4 mV to-41.2 mV and the interfacial tension decreased by 52.6%before and after oral progressing.In conclusion,the oral processing of stewed pork with brown sauce was essentially a process in which fat was constantly emulsified,and saliva might act as an emulsifier.This study provides new insights on understanding the oral processing process and sensory changes of fat.
基金supported by the Hainan Provincial Natural Science Foundation of China(222RC548)the National Natural Science Foun-dation of China(22109034,22109035,52164028,62105083,21805104)+3 种基金the Opening Project of Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province(KFKT2021007)the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20082,20083,20084,21065,21124,21125)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhys2022-174)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China and the Specific Research Fund of the Innovation Platform for Academicians of Hainan Province.
文摘Electrocatalytic CO_(2) reduction reaction(eCO_(2) RR)has significant relevance to settle the global energy crisis and abnormal climate problem via mitigating the excess emission of waste CO_(2) and producing high-value-added chemicals.Currently,eCO_(2) RR to formic acid or formate is one of the most technologically and economically viable approaches to realize high-efficiency CO_(2) utilization,and the development of efficient electrocatalysts is very urgent to achieve efficient and stable catalytic performance.In this review,the recent advances for two-dimensional bismuth-based nanosheets(2D Bi-based NSs)electrocatalysts are concluded from both theoretical and experimental perspectives.Firstly,the preparation strategies of 2D Bi-based NSs in aspects to precisely control the thickness and uniformity are summarized.In addition,the electronic regulation strategies of 2D Bi-based NSs are highlighted to gain insight into the effects of the structure-property relationship on facilitating CO_(2) activation,improving product selectivity,and optimizing carrier transport dynamics.Finally,the considerable challenges and opportunities of 2D Bi-based NSs are discussed to lighten new directions for future research of eCO_(2) RR.
基金supported by the National Natural Science Foundation of China,No.81303091
文摘Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
基金Projects(2019JJ70077,2019JJ50510) supported by the National Science Foundation of Hunan Province,ChinaProject(31665004) supported by Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,ChinaProjects(18B552,18B285) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.
基金Projects(U1664252,51605234)supported by the National Natural Science Foundation of ChinaProject(2016YFB0101700)supported by the National Key Research and Development Program of ChinaProject(31665004)supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body
文摘Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer.
文摘BACKGROUND The pathophysiological characteristics of severe pneumonia complicated by respiratory failure comprise pulmonary parenchymal changes leading to ventilation imbalance,alveolar capillary injury,pulmonary edema,refractory hypoxemia,and reduced lung compliance.Prolonged hypoxia can cause acid-base balance disorder,peripheral circulatory failure,blood-pressure reduction,arrhythmia,and other adverse consequences.AIM To investigate sequential mechanical ventilation’s effect on severe pneumonia complicated by respiratory failure.METHODS We selected 108 patients with severe pneumonia complicated by respiratory failure who underwent mechanical ventilation between January 2018 and September 2020 at the Luhe Hospital’s Intensive Care Unit and divided them into sequential and regular groups according to a randomized trial,with each group comprising 54 patients.The sequential group received invasive and non-invasive sequential mechanical ventilation,whereas the regular group received invasive mechanical ventilation.Blood-gas parameters,hemodynamic parameters,respiratory mechanical parameters,inflammatory factors,and treatment outcomes were compared between the two groups before and after mechanical-ventilation treatment.RESULTS The arterial oxygen partial pressure and stroke volume variation values of the sequential group at 24,48,and 72 h of treatment were higher than those of the conventional group(P<0.05).The carbon dioxide partial pressure value of the sequential group at 72 h of treatment and the Raw value of the treatment group at 24 and 48 h were lower than those of the conventional group(P<0.05).The pH value of the sequential group at 24 and 72 h of treatment,the central venous pressure value of the treatment at 24 h,and the Cst value of the treatment at 24 and 48 h were higher than those of the conventional group(P<0.05).The tidal volume in the sequential group at 24 h of treatment was higher than that in the conventional group(P<0.05),the measured values of interleukin-6 and tumor necrosis factor-αin the sequential group at 72 h of treatment were lower than those in the conventional group(P<0.05),and the total time of mechanical ventilation in the sequential group was shorter than that in the conventional group,with a statistically significant difference(P<0.05).CONCLUSION Treating severe pneumonia complicated by respiratory failure with sequential mechanical ventilation is more effective in improving respiratory system compliance,reducing inflammatory response,maintaining hemodynamic stability,and improving patient blood-gas levels;however,from this study’s perspective,it cannot reduce patient mortality.
基金Project(51605234)supported by the National Natural Science Foundation of ChinaProjects(2019JJ50510,2019JJ70077)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(18B285,18B552)supported by Scientific Research Fund of Hunan Provincial Education Department,China。
文摘The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°.
基金Acknowledgements We thank the RIKEN BRC in Japan for provision of all full-length cDNA in this study. National Natural Science Foundation of China (grants numbers 30530100 and 90408010), the State Key Program of Basic Research of China (grant numbers 2007CB947600 and 2007CB108800), and Hi-Tech Research and Development Program of China (grant number 2006AA02Z313) supported this project.
文摘Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.
基金supported by Shanghai Science Foundation grants,National Science Foundation of China(No.30570850 and 10574134)National Research Program for Basic Research of China(No.2004CB518804)+1 种基金National Research Program for High Technology(No.2006AA02Z-320 and 2006AA 02Z197)European 6th Program(LSHBCT-2005-019067).
文摘Liver cancer is one of the most threatening diseases in Chinese population. Just like in other tissues, tumor initiation and development in liver involve multiple steps of genetic and epigenetic alterations with several unknown details. However, unlike in other tissues, a tissue specific inducible Cre recombinase system that allows temporal and spatial deletion of a target DNA fragment is still not available for in vivo functional gene annotation in hepatocytes. In our pursuit to establish such a mouse model, we designed a dual inducible Cre transgene system and tested it in cultured cells. By combining a CCAAT/enhancer binding protein β (C/EBP β) promoter derived Tet-off expression system and the estrogen receptor (ER) mediated functional control, we show a desirable profile of both hepatocyte-specificity and regulability of the Cre expression in a series of critical assessments in the cell culture system, which provides confidence in continuation of our ongoing pursuit in mouse.
文摘Lactobacillus species are non-spore-forming, gram-positive bacteria and lactic acid producing bacteria (LAPB) that naturally inhabit the human and animal gastrointestinal and mouth organs. The aim of this review was to evaluate the new progress regarding the use of Lactobacillus species as live delivery vectors, prevention, and treatment of pathogenic and metabolic diseases. Lactobacillus strains of probiotics have been extensively studied and have confirmed that they can absolutely improve performance as live delivery vectors, a treatment option of various diseases such as: Hemorrhagic cecal coccidiosis in young poultry, hypertension, avian flu, obesity, diabetes, Derzsy’s disease or parvovirus infection, human immunodeficiency virus infections, irritable bowel syndrome, gastrointestinal disorders, Fungal infections, vaginal eubiosis, fish and shellfish species diseases. We give you an idea about that Lactobacillus species have been proficient in preventing and treating both disorders in animal models and some are used for clinical trials. We present the most current studies on the use of Lactobacillus strains that had an impact on an effective immune response to a specific antigen because a variety of antigens have been expressed. Therefore Lactobacillus strains can be considered as good candidates because of its potential for diseases treatment and vaccine development as heterologous protein secretion to date.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0401900)the Major Science and Technology Special Project in Anhui Province,China(Grant No.17030901001)
文摘We have developed Macadam’s theory to deal with RGB laser display, which can well describe the color gamut display system varying with the laser bandwidth. By calculating the volume of R¨osch–Macadam color solid of laser display system under the Rec.2020 standard, we can obtain that the volume of chromatic stereoscopic at 30-nm laser spectral linewidth is about 90% of that at 1 nm laser spectral linewidth, which is important in laser display system to trade off the color gamut and the suppression of laser speckles. Moreover, we can also calculate the color gamut volume with different primary numbers and different primary wavelengths.
基金The authors would like to acknowledge the Projects 21776082 and 21978085 supported by National Natural Science Foundation of ChinaProject 22221818014 supported by the Fundamental Research Funds for the Central Universities.
文摘The production capability of a fermentation process is predominately determined by individual strains,which ultimately affected ultimately by interactions between the scale-dependent flow field developed within bioreactors and the physiological response of these strains.Interpreting these complicated interactions is key for better understanding the scale-up of the fermentation process.We review these two aspects and address progress in strategies for scaling up fermentation processes.A perspective on how to incorporate the multiomics big data into the scale-up strategy is presented to improve the design and operation of industrial fermentation processes.
基金supported by National Natural Science Foundation of China(81602953)China Postdoctoral Special Science Foundation(2017T100706)China Postdoctoral Science Foundation(2016M590893)
文摘OBJECTIVE To discover a small-molecule activator of ULK1 for Parkinson disease treatment and exploreits potential mechanisms.METHODS Candidate ULK1 activator was found by using structure-based design and high-through put screening,then modified by chemical synthesis and screened by kinase and autophgic activities.The amino acid residues that key to the activation site of the best candidate ULK1 activator(BL-918) were determined by site-directed mutagenesis,as well as in vitro kinase assay,ADP-Glo kinase assay and surface plasmon resonance(SPR) analysis.The mechanisms of BL-918 induced cytoprotective autophagy were investigated by electron microscopy,fluorescence microscopy,Western blotting,co-immunoprecipitation assay,si RNA and GFP-LC3 plasmid transfections.The therapeutic effect of BL-918 was determined by MPTP-mouse model,including behavioral tests,the levels of dopamine and its derivatives,as well as immunofluorescence and Western blotting.The toxicity of BL-918 was assessed by blood sample analysis and hematoxylin-eosin staining.RESULTS We discovered a small molecule(BL-918) as a potent activator of ULK1 by structure-based drug design.Subsequently,some key amino acid residues(Arg18,Lys50,Asn86 and Tyr89) were found to be crucial to the binding pocket between ULK1 and BL-918,by site-directed mutagenesis.Moreover,we found that BL-918 could induce autophagy via the ULK complex in neuroblastoma SH-SY5Y cells.Intriguingly,this activator displayed a cytoprotective effect on MPP+-treated SH-SY5Y cells,as well as protected against MPTP-induced motor dysfunction and loss of dopaminergic neurons by targeting ULK1-modulated autophagy in mouse models of PD.CONCLUSION We discovered a novel ULK1 activator(BL-918) that potently activated ULK1.This activator could induce cytoprotective autophagy via the ULK1 complex in SH-SY5Y cells,and also exerted its neuroprotective effects by targeting ULK1-modulated autophagy in a MPTP-induced PD mouse model,which may serve as a candidate drug for future PD therapy.