Electrochemical CO2 reduction reaction(CO2RR)to formate is economically viable considering the energy input and market value.Through learning nature,a series of chloroplast-like porous bismuth-based core–shell(CPBC)m...Electrochemical CO2 reduction reaction(CO2RR)to formate is economically viable considering the energy input and market value.Through learning nature,a series of chloroplast-like porous bismuth-based core–shell(CPBC)materials have been designed.In these materials,the porous carbon can enrich and transfer CO2 to the core–shell Bi@Bi2O3 in CO2 reduction process,during which Bi2O3 layer can be transformed into activated metastable layer to efficiently convert CO2 into formate and Bi can provide abundant electrons.Based on this,superior performances for most of important parameters in CO2 RR can be achieved and best of them,CPBC-1 presents remarkable Faradaic efficiency(FEformate>94%)over a wide potential range(-0.65 to-1.0 V)with high catalysis durability(>72 h).Noteworthy,its maximum energy efficiency is as high as 76.7%at-0.7 V,the highest one in reported bismuth-based materials.This work opens novel perspectives in designing nature-inspired CO2RR electrocatalysts.展开更多
The design of selective and efficient covalent organic frameworks(COFs)based electrocatalysts with tunable morphology for efficient CO_(2) reduction reaction(CO_(2)RR)to CH_(4) is highly desirable.Here,two kinds of an...The design of selective and efficient covalent organic frameworks(COFs)based electrocatalysts with tunable morphology for efficient CO_(2) reduction reaction(CO_(2)RR)to CH_(4) is highly desirable.Here,two kinds of anthraquinone-based COFs(i.e.,AAn-COF and OH-AAn-COF)with tunable 1D superstructures(e.g.,nanofibers(NF)and hollow tubes(HT))have been produced via Schiff-base condensation reaction.Interestingly,a rarely reported nanosheet-based self-template mechanism and a nanosheet-crimping mechanism have been demonstrated for the production of COF-based nanofibers and hollow tubes,respectively.Besides,the obtained COF-based superstructures can be post-modified with transition metals for efficient CO_(2)RR.Specifically,AAn-COF-Cu(NF)and OH-AAn-COF-Cu(HT)exhibit superior faradaic-efficiency with CH_(4)(FECH_(4))of 77%(-128.1 mA cm^(-2),-0.9 V)and 61%(-99.5 mA cm^(-2),-1.0 V)in a flow-cell,respectively.Noteworthy,the achieved FECH_(4) of AAn-COF-Cu(NF)(77%)is the highest one among reported crystalline COFs.This work provides a general methodology in exploring morphology-controlled COFs for electrocatalytic CO_(2)RR.展开更多
Morphology-controlled electrocatalysts with the ability of CO_(2) adsorption/activation, mass transfer, high stability and porosity are much desired in electrochemical CO_(2) reduction reaction (CO_(2)RR). Here, three...Morphology-controlled electrocatalysts with the ability of CO_(2) adsorption/activation, mass transfer, high stability and porosity are much desired in electrochemical CO_(2) reduction reaction (CO_(2)RR). Here, three kinds of multi-dimensional nanostructures (i.e., hollow sphere, nanosheets and nanofibers) have been successfully produced through the modulation of porphyrin-based covalent organic frameworks (COFs) with various modulators. The obtained nanostructures with high-stability, large surface-area, and single metal sites enable efficient CO_(2)RR into CH_(4). Notably, they all exhibit higher FE (hollow sphere, 68.2%;nanosheet, 64.2% and nanofiber, 71.0%, -0.9 V) than COF-366-Cu (43.0%, -0.9 V) after morphology control. Noteworthy, the FE of COF-366-Cu (HS) keeps higher than 52.4% over a wide potential range from -0.9 V to -1.1 V and the achieved FECH_(4) + C_(2)H_(4) (82.8%, -0.9 V) is superior to most of reported COFs and copper-based electrocatalysts. This work paves a new way in the exploration of COF-based multi-dimensional nanostructures applicable in efficient CO_(2)RR to CH_(4).展开更多
基金financially supported by the National Natural Science Foundation of China(21622104,21871142 and 21901122)the Natural Science Foundation of Jiangsu Province of China(BK20171032)+3 种基金the Natural Science Research of Jiangsu Higher Education Institutions of China(17KJB150025 and 19KJB150011)Projects funded by China Postdoctoral Science Foundation(2018 M630572 and 2019 M651873)Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials。
文摘Electrochemical CO2 reduction reaction(CO2RR)to formate is economically viable considering the energy input and market value.Through learning nature,a series of chloroplast-like porous bismuth-based core–shell(CPBC)materials have been designed.In these materials,the porous carbon can enrich and transfer CO2 to the core–shell Bi@Bi2O3 in CO2 reduction process,during which Bi2O3 layer can be transformed into activated metastable layer to efficiently convert CO2 into formate and Bi can provide abundant electrons.Based on this,superior performances for most of important parameters in CO2 RR can be achieved and best of them,CPBC-1 presents remarkable Faradaic efficiency(FEformate>94%)over a wide potential range(-0.65 to-1.0 V)with high catalysis durability(>72 h).Noteworthy,its maximum energy efficiency is as high as 76.7%at-0.7 V,the highest one in reported bismuth-based materials.This work opens novel perspectives in designing nature-inspired CO2RR electrocatalysts.
基金supported by the National Natural Science Foundation of China(21871141,21871142,21901122,22071109 and 92061101)the Natural Science Research of Jiangsu Higher Education Institutions of China(19KJB150011)+3 种基金China Postdoctoral Science Foundation(2018M630572 and 2019M651873)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX201171)Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.
文摘The design of selective and efficient covalent organic frameworks(COFs)based electrocatalysts with tunable morphology for efficient CO_(2) reduction reaction(CO_(2)RR)to CH_(4) is highly desirable.Here,two kinds of anthraquinone-based COFs(i.e.,AAn-COF and OH-AAn-COF)with tunable 1D superstructures(e.g.,nanofibers(NF)and hollow tubes(HT))have been produced via Schiff-base condensation reaction.Interestingly,a rarely reported nanosheet-based self-template mechanism and a nanosheet-crimping mechanism have been demonstrated for the production of COF-based nanofibers and hollow tubes,respectively.Besides,the obtained COF-based superstructures can be post-modified with transition metals for efficient CO_(2)RR.Specifically,AAn-COF-Cu(NF)and OH-AAn-COF-Cu(HT)exhibit superior faradaic-efficiency with CH_(4)(FECH_(4))of 77%(-128.1 mA cm^(-2),-0.9 V)and 61%(-99.5 mA cm^(-2),-1.0 V)in a flow-cell,respectively.Noteworthy,the achieved FECH_(4) of AAn-COF-Cu(NF)(77%)is the highest one among reported crystalline COFs.This work provides a general methodology in exploring morphology-controlled COFs for electrocatalytic CO_(2)RR.
基金financially supported by the National Natural Science Foundation of China (NSFC, Nos. 21871141, 21871142,21901122, 22071109 and 92061101)the Natural Science Research of Jiangsu Higher Education Institutions of China (No.19KJB150011)+1 种基金Project funded by China Postdoctoral Science Foundation (Nos. 2018M630572 and 2019M651873)Priority Academic Program Development of Jiangsu Higher Education Institutions and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials。
文摘Morphology-controlled electrocatalysts with the ability of CO_(2) adsorption/activation, mass transfer, high stability and porosity are much desired in electrochemical CO_(2) reduction reaction (CO_(2)RR). Here, three kinds of multi-dimensional nanostructures (i.e., hollow sphere, nanosheets and nanofibers) have been successfully produced through the modulation of porphyrin-based covalent organic frameworks (COFs) with various modulators. The obtained nanostructures with high-stability, large surface-area, and single metal sites enable efficient CO_(2)RR into CH_(4). Notably, they all exhibit higher FE (hollow sphere, 68.2%;nanosheet, 64.2% and nanofiber, 71.0%, -0.9 V) than COF-366-Cu (43.0%, -0.9 V) after morphology control. Noteworthy, the FE of COF-366-Cu (HS) keeps higher than 52.4% over a wide potential range from -0.9 V to -1.1 V and the achieved FECH_(4) + C_(2)H_(4) (82.8%, -0.9 V) is superior to most of reported COFs and copper-based electrocatalysts. This work paves a new way in the exploration of COF-based multi-dimensional nanostructures applicable in efficient CO_(2)RR to CH_(4).