Objective: Annual cancer incidence and mortality in 2008 were provided by National Central Cancer Registry in China, which data were collected from population‐based cancer registries in 2011. Methods: There were 56...Objective: Annual cancer incidence and mortality in 2008 were provided by National Central Cancer Registry in China, which data were collected from population‐based cancer registries in 2011. Methods: There were 56 registries submitted their data in 2008. After checking and evaluating the data quality, total 41 registries' data were accepted and pooled for analysis. Incidence and mortality rates by area (urban or rural areas) were assessed, as well as the age‐ and sex‐specific rates, age‐standardized rates, proportions and cumulative rate. Results: The coverage population of the 41 registries was 66,138,784 with 52,158,495 in urban areas and 13,980,289 in rural areas. There were 197,833 new cancer cases and 122,136 deaths in cancer with mortality to incidence ratio of 0.62. The morphological verified rate was 69.33%, and 2.23% of cases were identified by death certificate only. The crude cancer incidence rate in all areas was 299.12/100,000 (330.16/100,000 in male and 267.56/100,000 in female) and the age‐standardized incidence rates by Chinese standard population (ASIRC) and world standard population (ASIRW) were 148.75/100,000 and 194.99/100,000, respectively. The cumulative incidence rate (0-74 years old) was of 22.27%. The crude incidence rate in urban areas was higher than that in rural areas. However, after adjusted by age, the incidence rate in urban was lower than that in rural. The crude cancer mortality was 184.67/100,000 (228.14/100,000 in male and 140.48/100,000 in female), and the age‐standardized mortality rates by Chinese standard population (ASMRC) and by world population were 84.36/100,000 and 114.32/100,000, respectively. The cumulative mortality rate (0-74 years old) was of 12.89%. Age‐adjusted mortality rates in urban areas were lower than that in rural areas. The most common cancer sites were lung, stomach, colon‐rectum, liver, esophagus, pancreas, brain, lymphoma, breast and cervix which accounted for 75% of all cancer incidence. Lung cancer was the leading cause of cancer death, followed by gastric cancer, liver cancer, esophageal cancer, colorectal cancer and pancreas cancer, which accounted for 80% of all cancer deaths. The cancer spectrum varied by areas and sex in rural areas, cancers from digestive system were more common, such as esophageal cancer, gastric cancer and liver cancer, while incidence rates of lung cancer and colorectal cancer were much higher in urban areas. In addition, breast cancer was the most common cancer in urban women followed by liver cancer, gastric cancer and colorectal cancer. Conclusion: Lung cancer, gastric cancer, colorectal cancer, liver cancer, esophageal cancer and female breast cancer contributed to the increased incidence of cancer, which should be paid more attention to in further national cancer prevention and control program. Different cancer control strategies should be carried out due to the varied cancer spectrum in different groups.展开更多
A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly pro...A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construc- tion method, targeted muscle reinnervation (TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifimctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the under- lying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. Intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-fimction recon- struction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These pre- liminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR tech- nique in human subjects.展开更多
文摘Objective: Annual cancer incidence and mortality in 2008 were provided by National Central Cancer Registry in China, which data were collected from population‐based cancer registries in 2011. Methods: There were 56 registries submitted their data in 2008. After checking and evaluating the data quality, total 41 registries' data were accepted and pooled for analysis. Incidence and mortality rates by area (urban or rural areas) were assessed, as well as the age‐ and sex‐specific rates, age‐standardized rates, proportions and cumulative rate. Results: The coverage population of the 41 registries was 66,138,784 with 52,158,495 in urban areas and 13,980,289 in rural areas. There were 197,833 new cancer cases and 122,136 deaths in cancer with mortality to incidence ratio of 0.62. The morphological verified rate was 69.33%, and 2.23% of cases were identified by death certificate only. The crude cancer incidence rate in all areas was 299.12/100,000 (330.16/100,000 in male and 267.56/100,000 in female) and the age‐standardized incidence rates by Chinese standard population (ASIRC) and world standard population (ASIRW) were 148.75/100,000 and 194.99/100,000, respectively. The cumulative incidence rate (0-74 years old) was of 22.27%. The crude incidence rate in urban areas was higher than that in rural areas. However, after adjusted by age, the incidence rate in urban was lower than that in rural. The crude cancer mortality was 184.67/100,000 (228.14/100,000 in male and 140.48/100,000 in female), and the age‐standardized mortality rates by Chinese standard population (ASMRC) and by world population were 84.36/100,000 and 114.32/100,000, respectively. The cumulative mortality rate (0-74 years old) was of 12.89%. Age‐adjusted mortality rates in urban areas were lower than that in rural areas. The most common cancer sites were lung, stomach, colon‐rectum, liver, esophagus, pancreas, brain, lymphoma, breast and cervix which accounted for 75% of all cancer incidence. Lung cancer was the leading cause of cancer death, followed by gastric cancer, liver cancer, esophageal cancer, colorectal cancer and pancreas cancer, which accounted for 80% of all cancer deaths. The cancer spectrum varied by areas and sex in rural areas, cancers from digestive system were more common, such as esophageal cancer, gastric cancer and liver cancer, while incidence rates of lung cancer and colorectal cancer were much higher in urban areas. In addition, breast cancer was the most common cancer in urban women followed by liver cancer, gastric cancer and colorectal cancer. Conclusion: Lung cancer, gastric cancer, colorectal cancer, liver cancer, esophageal cancer and female breast cancer contributed to the increased incidence of cancer, which should be paid more attention to in further national cancer prevention and control program. Different cancer control strategies should be carried out due to the varied cancer spectrum in different groups.
基金Project supported by the National Basic Research Program(973)of China(No.2013CB329505)the National Natural Science Foundation of China(Nos.61135004 and 61201114)+2 种基金the China Postdoctoral Science Foundation(No.2013M541046)the Shenzhen Governmental Basic Research Grant(No.JCYJ20120617115010496)the State Key Laboratory of Bioelectronics of Southeast University
文摘A lack of myoelectric sources after limb amputation is a critical challenge in the control of multifunctional motorized prostheses. To reconstruct myoelectric sources physiologically related to lost limbs, a newly proposed neural-function construc- tion method, targeted muscle reinnervation (TMR), appears promising. Recent advances in the TMR technique suggest that TMR could provide additional motor command information for the control of multifimctional myoelectric prostheses. However, little is known about the nature of the physiological functional recovery of the reinnervated muscles. More understanding of the under- lying mechanism of TMR could help us fine tune the technique to maximize its capability to achieve a much higher performance in the control of multifunctional prostheses. In this study, rats were used as an animal model for TMR surgery involving transferring a median nerve into the pectoralis major, which served as the target muscle. Intramuscular myoelectric signals reconstructed following TMR were recorded by implanted wire electrodes and analyzed to explore the nature of the neural-fimction recon- struction achieved by reinnervation of targeted muscles. Our results showed that the active myoelectric signal reconstructed in the targeted muscle was acquired one week after TMR surgery, and its amplitude gradually became stronger over time. These pre- liminary results from rats may serve as a basis for exploring the mechanism of neural-function reconstruction by the TMR tech- nique in human subjects.