Hydrogen,regarded as a promising energy carrier to alleviate the current energy crisis,can be generated from hydrogen evolution reaction(HER),whereas its efficiency is impeded by the activity of catalysts.Herein,effec...Hydrogen,regarded as a promising energy carrier to alleviate the current energy crisis,can be generated from hydrogen evolution reaction(HER),whereas its efficiency is impeded by the activity of catalysts.Herein,effective strategies,such as strain and interfacial engineering,are imposed to tune the catalysis performance of novel two-dimensional(2D)phosphorus carbide(PC)layers using first-principle calculations.The findings show that P site in pristine monolayer PC(ML-PC)exhibits higher HER performance than C site.Intriguingly,constructing bilayer PC sheet(BL-PC)can change the coordinate configuration of P atom to form 3-coordination-P atom(3-co-P)and 4-coordination-P atom(4-co-P),and the original activity of 3-co-P site is higher than the 4-co-P site.When an external compressive strain is applied,the activity of the 4-co-P site is enhanced whereas the external strain can barely affect that of 3-co-P site.Interestingly,the graphene substrate enhances the overall activity of the BL-PC because the graphene substrate optimizes the?GH*value of 4-co-P site,although it can barely affect the HER activity of 3-co-P site and ML-PC.The desirable properties render 2 D PC-based material promising candidates for HER catalysts and shed light on the wide utilization in electrocatalysis.展开更多
Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectatio...Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectation.Herein,we demonstrate a competitive assembling strategy for the construction of metal-free graphite carbon nitride(CN)homojunctions in which morphology and composition can be easily controlled simultaneously by only changing the ratio of assembly raw materials.These homojunctions are comprised of porous nanotubular S-doped CN(SCN)grafted with CN nanovesicles,which are derived from thermal polycondensation of melamine-thiocyanuric acid(M-T)/melamine-cyanuric acid(M-C)supramolecular hybrid blocks.This unique architecture and component engineering endows the novel SCN-CN homojunction with abundant active sites,enhanced visible trapping ability,and intimate interface contact.As a result,the synthesized SCN-CN homojunctions demonstrate high photocatalytic activity for hydrogen evolution and pollutant degradation.This developed strategy opens up intriguing opportu-nities for the rational construction of intricate metal-free heterostructures with controllable architecture and interfacial contact for applications in energy-related fields.展开更多
As a low-cost visible-light-driven metal-free catalyst, graphitic carbon nitride(g-CN) has attracted increasing attention due to its wide applications for solar energy conversion, environmental purification,and organi...As a low-cost visible-light-driven metal-free catalyst, graphitic carbon nitride(g-CN) has attracted increasing attention due to its wide applications for solar energy conversion, environmental purification,and organic photosynthesis. In particular, the catalytic performance of g-CNcan be easily modulated by modifying morphology, doping, and copolymerization. Simultaneous optimization, however, has little been achieved. Herein, a facile one-pot strategy is developed to synthesize porous B-doped g-CNnanosheets by using HBOand urea as the precursor during thermal polymerization. The resultant B-doped g-CNnanosheets retain the original framework of bulk g-CN, while induce prominently enhanced visible light harvesting and narrowing band gap by 0.32 eV compared to pure g-CN. Moreover, the adsorption capacity and photodegradation kinetics of methylene blue(MB) under visible light irradiation over B-doped g-CNnanosheets can be improved by 20.5 and 17 times, respectively. The synthesized porous B-doped g-CNnanosheets also exhibit higher activities than pure g-CNas bifunctional electrocatalyst for both oxygen evolution reaction(OER) and oxygen reduction reaction(ORR). The enhanced catalyst performance of porous B-doped g-CNnanosheets stems from the strong synergistic effect originating from the larger exposed active sites generated by the exfoliation of g-CNinto nanosheets and the porous structure, as well as the better conductivity owing to B-doping. This work provides a simple, effective, and robust method for the synthesis of g-CN-based nanomaterial with superior properties to meet the needs of various applications.展开更多
Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitati...Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.展开更多
Rationally engineering the microstructure and electronic structure of catalysts to induce high activity for versatile applications remains a challenge. Herein, chlorine doped graphitic carbon nitride(Cl-doped g-C3N4) ...Rationally engineering the microstructure and electronic structure of catalysts to induce high activity for versatile applications remains a challenge. Herein, chlorine doped graphitic carbon nitride(Cl-doped g-C3N4) nanorings have been designed as a superior photocatalyst for pollutant degradation and oxygen evolution reaction(OER). Remarkably, Cl-doped g-C3N4 nanorings display enhanced OER performance with a small overpotential of approximately 290 m V at current density of 10 m A cm^-2 and Tafel slope of 83 m V dec-1, possessing comparable OER activity to precious metal oxides RuO2 and IrO2/C. The excellent catalytic performance of Cl-doped g-C3N4 nanorings originates from the strong oxidation capability,abundant active sites exposed and efficient charge transfer. More importantly, visible light irradiation gives rise to a prominent improvement of the OER performance, reducing the OER overpotential and Tafel slope by 140 m V and 28 m V dec^-1, respectively, demonstrating the striking photo-responsive OER activity of Cl-doped g-C3N4 nanorings. The great photo-induced improvement in OER activity would be related to the efficient charge transfer and the·OH radicals arising spontaneously on CN-Cl100 catalyst upon light irradiation. This work establishes Cl-doped g-C3N4 nanorings as a highly competitive metal-free candidate for photoelectrochemical energy conversion and environmental cleaning application.展开更多
Topological morphology that dominates the surface electronic properties of nanostructures plays a key role in producing desired materials for versatile functions and applications in many fields,but its modulation for ...Topological morphology that dominates the surface electronic properties of nanostructures plays a key role in producing desired materials for versatile functions and applications in many fields,but its modulation for specific functions remains a big challenge.Herein,we report an acid-induced method to prepare S-doped graphitic carbon nitride/graphitic carbon nitride(S-CN/CN)homojunction by simply pyrolyzing a supramolecular precursor synthesized from melamine and H_(2)SO_(4).The topological morphology and electronic structure of CN homojunction can be easily adjusted only by changing the ratio of raw materials.Moreover,the topological morphology of S-CN/CN homojunction can be further adjusted from hollow cocoon to 2D nanosheets by changing the annealing conditions.The optimized S-CN/CN homojunction shows highly efficient in charge transfer and separation and exhibits superior OER activity and high ability to degrade organic pollutants.Impressively,S-CN/CN nanosheets only demand low overpotential of301 m V to drive a current density of 10 m Acm^(-2)in 1 M KOH media,and the corresponding Tafel slope is only 57.71 m V/dec,which is superior to the most advanced precious metal Ir O_(2)catalyst.Moreover,under visible light irradiation,its photodegradation kinetic rate of Rh B is 2.38,which is 47.6 times higher than that of bulk CN.This work provides useful guidance for designing and developing efficient multifunctional metal-free catalysts.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51772085 and U1830138)。
文摘Hydrogen,regarded as a promising energy carrier to alleviate the current energy crisis,can be generated from hydrogen evolution reaction(HER),whereas its efficiency is impeded by the activity of catalysts.Herein,effective strategies,such as strain and interfacial engineering,are imposed to tune the catalysis performance of novel two-dimensional(2D)phosphorus carbide(PC)layers using first-principle calculations.The findings show that P site in pristine monolayer PC(ML-PC)exhibits higher HER performance than C site.Intriguingly,constructing bilayer PC sheet(BL-PC)can change the coordinate configuration of P atom to form 3-coordination-P atom(3-co-P)and 4-coordination-P atom(4-co-P),and the original activity of 3-co-P site is higher than the 4-co-P site.When an external compressive strain is applied,the activity of the 4-co-P site is enhanced whereas the external strain can barely affect that of 3-co-P site.Interestingly,the graphene substrate enhances the overall activity of the BL-PC because the graphene substrate optimizes the?GH*value of 4-co-P site,although it can barely affect the HER activity of 3-co-P site and ML-PC.The desirable properties render 2 D PC-based material promising candidates for HER catalysts and shed light on the wide utilization in electrocatalysis.
基金the National Natural Science Foundation of China(Nos.51772085,12072110)the Natural Science Foundation of Hunan Province(No.2020JJ4190).
文摘Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectation.Herein,we demonstrate a competitive assembling strategy for the construction of metal-free graphite carbon nitride(CN)homojunctions in which morphology and composition can be easily controlled simultaneously by only changing the ratio of assembly raw materials.These homojunctions are comprised of porous nanotubular S-doped CN(SCN)grafted with CN nanovesicles,which are derived from thermal polycondensation of melamine-thiocyanuric acid(M-T)/melamine-cyanuric acid(M-C)supramolecular hybrid blocks.This unique architecture and component engineering endows the novel SCN-CN homojunction with abundant active sites,enhanced visible trapping ability,and intimate interface contact.As a result,the synthesized SCN-CN homojunctions demonstrate high photocatalytic activity for hydrogen evolution and pollutant degradation.This developed strategy opens up intriguing opportu-nities for the rational construction of intricate metal-free heterostructures with controllable architecture and interfacial contact for applications in energy-related fields.
文摘As a low-cost visible-light-driven metal-free catalyst, graphitic carbon nitride(g-CN) has attracted increasing attention due to its wide applications for solar energy conversion, environmental purification,and organic photosynthesis. In particular, the catalytic performance of g-CNcan be easily modulated by modifying morphology, doping, and copolymerization. Simultaneous optimization, however, has little been achieved. Herein, a facile one-pot strategy is developed to synthesize porous B-doped g-CNnanosheets by using HBOand urea as the precursor during thermal polymerization. The resultant B-doped g-CNnanosheets retain the original framework of bulk g-CN, while induce prominently enhanced visible light harvesting and narrowing band gap by 0.32 eV compared to pure g-CN. Moreover, the adsorption capacity and photodegradation kinetics of methylene blue(MB) under visible light irradiation over B-doped g-CNnanosheets can be improved by 20.5 and 17 times, respectively. The synthesized porous B-doped g-CNnanosheets also exhibit higher activities than pure g-CNas bifunctional electrocatalyst for both oxygen evolution reaction(OER) and oxygen reduction reaction(ORR). The enhanced catalyst performance of porous B-doped g-CNnanosheets stems from the strong synergistic effect originating from the larger exposed active sites generated by the exfoliation of g-CNinto nanosheets and the porous structure, as well as the better conductivity owing to B-doping. This work provides a simple, effective, and robust method for the synthesis of g-CN-based nanomaterial with superior properties to meet the needs of various applications.
基金supported by the National Natural Science Foundation of China (51772085 and 12072110)the Natural Science Foundation of Hunan Province (2020JJ4190)。
文摘Graphitic carbon nitride quantum dots(CNQDs) are emerging as attractive photoluminescent(PL)materials with excellent application potential in fluorescence imaging and heavy-metal ion detection. However, three limitations, namely, low quantum yields(QYs), self-quenching,and excitation-dependent PL emission behaviors, severely impede the commercial applications of crystalline CNQDs.Here we address these three challenges by synthesizing borondoped amorphous CNQDs via a hydrothermal process followed by the top±down cutting approach. Structural disorder endows the amorphous boron-doped CNQDs(B-CNQDs)with superior elastic strain performance over a wide range of pH values, thus effectively promoting mass transport and reducing exciton quenching. Boron as a dopant could fine-tune the electronic structure and emission properties of the PL material to achieve excitation-independent emission via the formation of uniform boron states. As a result, the amorphous B-CNQDs show unprecedented fluorescent stability(i.e., no obvious fading after two years) and a high QY of 87.4%;these values indicate that the quantum dots obtained are very promising fluorescent materials. Moreover, the B-CNQDs show bright-blue fluorescence under ultraviolet excitation when applied as ink on commercially available paper and are capable of the selective and sensitive detection of Fe^(2+) and Cd^(2+) in the parts-per-billion range. This work presents a novel avenue and scientific insights on amorphous carbon-based fluorescent materials for photoelectrical devices and sensors.
基金supported financially by the National Natural Science Foundation of China (Nos. 51772085, 51471068 and U1530151)Large instrument fund of Hunan University
文摘Rationally engineering the microstructure and electronic structure of catalysts to induce high activity for versatile applications remains a challenge. Herein, chlorine doped graphitic carbon nitride(Cl-doped g-C3N4) nanorings have been designed as a superior photocatalyst for pollutant degradation and oxygen evolution reaction(OER). Remarkably, Cl-doped g-C3N4 nanorings display enhanced OER performance with a small overpotential of approximately 290 m V at current density of 10 m A cm^-2 and Tafel slope of 83 m V dec-1, possessing comparable OER activity to precious metal oxides RuO2 and IrO2/C. The excellent catalytic performance of Cl-doped g-C3N4 nanorings originates from the strong oxidation capability,abundant active sites exposed and efficient charge transfer. More importantly, visible light irradiation gives rise to a prominent improvement of the OER performance, reducing the OER overpotential and Tafel slope by 140 m V and 28 m V dec^-1, respectively, demonstrating the striking photo-responsive OER activity of Cl-doped g-C3N4 nanorings. The great photo-induced improvement in OER activity would be related to the efficient charge transfer and the·OH radicals arising spontaneously on CN-Cl100 catalyst upon light irradiation. This work establishes Cl-doped g-C3N4 nanorings as a highly competitive metal-free candidate for photoelectrochemical energy conversion and environmental cleaning application.
基金the National Natural Science Foundation of China(Nos.51772085 and 11704116)Natural Science Foundation of Hunan Province(Nos.2020JJ4190 and 2019JJ50175)。
文摘Topological morphology that dominates the surface electronic properties of nanostructures plays a key role in producing desired materials for versatile functions and applications in many fields,but its modulation for specific functions remains a big challenge.Herein,we report an acid-induced method to prepare S-doped graphitic carbon nitride/graphitic carbon nitride(S-CN/CN)homojunction by simply pyrolyzing a supramolecular precursor synthesized from melamine and H_(2)SO_(4).The topological morphology and electronic structure of CN homojunction can be easily adjusted only by changing the ratio of raw materials.Moreover,the topological morphology of S-CN/CN homojunction can be further adjusted from hollow cocoon to 2D nanosheets by changing the annealing conditions.The optimized S-CN/CN homojunction shows highly efficient in charge transfer and separation and exhibits superior OER activity and high ability to degrade organic pollutants.Impressively,S-CN/CN nanosheets only demand low overpotential of301 m V to drive a current density of 10 m Acm^(-2)in 1 M KOH media,and the corresponding Tafel slope is only 57.71 m V/dec,which is superior to the most advanced precious metal Ir O_(2)catalyst.Moreover,under visible light irradiation,its photodegradation kinetic rate of Rh B is 2.38,which is 47.6 times higher than that of bulk CN.This work provides useful guidance for designing and developing efficient multifunctional metal-free catalysts.