Comprehensive Summary Electrocatalytic reduction of CO_(2)to valuable products possesses huge potential to alleviate environmental and energy crisis.It is well known that Ag favors the conversion of CO_(2)to CO but th...Comprehensive Summary Electrocatalytic reduction of CO_(2)to valuable products possesses huge potential to alleviate environmental and energy crisis.It is well known that Ag favors the conversion of CO_(2)to CO but the exposed active sites and stability are still rather limited.In this study,a novel one-dimensional Ag-based metal-organic framework(1D Ag-NIM-MOF)was successfully synthesized and used in the electrocatalytic CO_(2)reduction reaction(CO_(2)RR)for the first time.As a result,the Faradaic efficiency of CO achieved 94.5%with current density of 12.5 mA·cm^(-2)in an H-type cell and 98.2%with current density of 161 mA·cm^(-2)in a flow cell at–1.0 V(vs.RHE),which stands as a new benchmark of Ag-based MOFs in the electrocatalytic CO_(2)RR.The excellent performance of 1D Ag-NIM-MOF is attributed to its peculiar one-dimensional structure,which is beneficial for diffusion of reactants and products,and exposure of much more catalytic sites.Compared to commercial Ag nanoparticles,1D Ag-NIM-MOF exhibits superior electrocatalytic CO_(2)RR performance with higher catalytic activity and stability.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22172116 and 21773176)Natural Science Foundation of Hubei Province(2022CFB130).
文摘Comprehensive Summary Electrocatalytic reduction of CO_(2)to valuable products possesses huge potential to alleviate environmental and energy crisis.It is well known that Ag favors the conversion of CO_(2)to CO but the exposed active sites and stability are still rather limited.In this study,a novel one-dimensional Ag-based metal-organic framework(1D Ag-NIM-MOF)was successfully synthesized and used in the electrocatalytic CO_(2)reduction reaction(CO_(2)RR)for the first time.As a result,the Faradaic efficiency of CO achieved 94.5%with current density of 12.5 mA·cm^(-2)in an H-type cell and 98.2%with current density of 161 mA·cm^(-2)in a flow cell at–1.0 V(vs.RHE),which stands as a new benchmark of Ag-based MOFs in the electrocatalytic CO_(2)RR.The excellent performance of 1D Ag-NIM-MOF is attributed to its peculiar one-dimensional structure,which is beneficial for diffusion of reactants and products,and exposure of much more catalytic sites.Compared to commercial Ag nanoparticles,1D Ag-NIM-MOF exhibits superior electrocatalytic CO_(2)RR performance with higher catalytic activity and stability.