期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Seismic velocity inversion based on CNN-LSTM fusion deep neural network 被引量:7
1
作者 Cao Wei Guo Xue-Bao +4 位作者 Tian Feng Shi Ying Wang Wei-Hong Sun Hong-Ri Ke Xuan 《Applied Geophysics》 SCIE CSCD 2021年第4期499-514,593,共17页
Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-mi... Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on fi eld data can eff ectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the eff ectiveness and decent generalization capability of the proposed method. 展开更多
关键词 Velocity inversion CNN-LSTM fusion deep neural network weight initialization training strategy
下载PDF
基于互相关改进的DTW在角道集叠加优化中的应用 被引量:7
2
作者 吴天麒 王云专 +2 位作者 郭雪豹 井洪亮 张振 《地球物理学进展》 CSCD 北大核心 2020年第5期1878-1887,共10页
逆时偏移对速度十分敏感,当速度存在误差时,角道集同相轴会发生弯曲,直接叠加会削弱成像结构信息.在无从改善速度的前提下,将角道集拉平再叠加是提升叠加效果的有效措施.借助动态时间规整算法(DTW),选取误差小的地震道作为参考道,通过... 逆时偏移对速度十分敏感,当速度存在误差时,角道集同相轴会发生弯曲,直接叠加会削弱成像结构信息.在无从改善速度的前提下,将角道集拉平再叠加是提升叠加效果的有效措施.借助动态时间规整算法(DTW),选取误差小的地震道作为参考道,通过欧式距离计算其他地震道与参考道的相似性,即可求取两者之间的匹配关系,拉平同相轴.但该方法仅考虑了地震道间幅值的相似性,当幅值差异较大时易造成错误匹配,导致同相轴波形畸变、振幅异常.为此,本文提出了一种基于互相关的动态时间规整算法(CDTW),采用一维互相关代替欧氏距离作为地震道间的相似性度量,并以利用二维互相关DTW计算的约束窗限制规整路径.测试表明,CDTW能将角道集同相轴拉平且对波形畸变具有良好的鲁棒性;经处理后叠加剖面中的同相轴较之前更加聚焦. 展开更多
关键词 道集拉平 动态时间规整 互相关 角道集
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部