Virus is a kind of microorganism and possesses simple structure and contains one nucleic acid,which must be replicated using the host cell system.It causes large-scale infectious diseases and poses serious threats to ...Virus is a kind of microorganism and possesses simple structure and contains one nucleic acid,which must be replicated using the host cell system.It causes large-scale infectious diseases and poses serious threats to the health,social well-being,and economic conditions of millions of people worldwide.Therefore,there is an urgent need to develop novel strategies for accurate diagnosis of virus infection to prevent disease transmission.Quantum dots(QDs)are typical fluorescence nanomaterials with high quantum yield,broad absorbance range,narrow and size-dependent emission,and good stability.QDs-based nanotechnology has been found to be effective method with rapid response,easy operation,high sensitivity,and good specificity,and has been widely applied for the detection of different viruses.However,until now,no systematic and critical review has been published on this important research area.Hence,in this review,we aim to provide a comprehensive coverage of various QDs-based virus detection methods.The fundamental investigations have been reviewed,including information related to the synthesis and biofunctionalization of QDs,QDs-based viral nucleic acid detection strategies,and QDs-based immunoassays.The challenges and perspectives regarding the potential application of QDs for virus detection is also discussed.展开更多
The global pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus has necessitated rapid,easy-to-use,and accurate diagnostic methods to monitor the virus infection.Herein,a ratiometric flu...The global pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus has necessitated rapid,easy-to-use,and accurate diagnostic methods to monitor the virus infection.Herein,a ratiometric fluorescence enzyme-linked immunosorbent assay(ELISA)was developed using Si-fluorescein isothiocyanate nanoparticles(FITC NPs)for detecting SARSCoV-2 nucleocapsid(N)protein.Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane(APTES)-FITC as the Si source.This method did not need post-modification and avoided the reduction in quantum yield and stability.The p-nitrophenyl(pNP)produced by the alkaline phosphatase(ALP)-mediated hydrolysis of pnitrophenyl phosphate(pNPP)could quench Si fluorescence in Si-FITC NPs via the inner filter effect.In ELISA,an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody.ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs.The change in fluorescence intensity ratio could be used for detecting N protein,with a wide linearity range(0.01-10.0 and 50-300 ng/mL)and low detection limit(0.002 ng/mL).The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum.Moreover,this proposed method can accurately distinguish coronavirus disease 2019(COVID-19)and non-COVID-19 patient samples.Therefore,this simple,sensitive,and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection.展开更多
Coronavirus disease 2019(COVID-19)highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission.Here,we developed a one-pot hydrothermal method to prepare Si-FITC nanoparti...Coronavirus disease 2019(COVID-19)highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission.Here,we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles(NPs)for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)nucleocapsid protein(N protein).The synthesis of Si-FITC NPs did not need post-modification,which addressed the issue of quantum yield reduction during the coupling reaction.Si-FITC NPs showed two distinct peaks,Si fluorescence atλem=385 nm and FITC fluorescence atλem=490 nm.In the presence of KMnO_(4),Si fluorescence was decreased and FITC fluorescence was enhanced.Briefly,in the presence of N protein,catalase(CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates.Subsequently,hydrogen peroxide(H_(2)O_(2))and Si-FITC NPs/KMnO_(4)were injected into the microplate together.The decomposition of H_(2)O_(2)by CAT resulted in remaining of KMnO_(4),which changed the fluorescence intensity ratio of Si-FITC NPs.The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL,and the detection limit was 0.003 ng/mL,which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL.The N protein concentration can be accurately determined in human serum.Furthermore,the COVID-19 and non-COVID-19 patients were distinguishable by this method.Therefore,the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity.展开更多
Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCoV-2)was identified as the pathogen causing the coronavirus disease(COVID-19),which sometimes resulted in fatal pneumonia(Hu et al.,2021).SARS-CoV-2 is ...Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCoV-2)was identified as the pathogen causing the coronavirus disease(COVID-19),which sometimes resulted in fatal pneumonia(Hu et al.,2021).SARS-CoV-2 is a biosafety level 3(BSL-3)pathogen,and the requirement for high containment conditions is a bottleneck for basic research on viral biology.To help general researchers who wish to study SARS-CoV-2 but do not have access to a BSL-3 facility,a system that(1)can mimic the real life cycle of the virus;(2)allows easy genetic manipulation;and(3)shows high biosafety in BSL-2 laboratory is required.展开更多
基金supported by National Key Research and Development Program of China(2021YFA0910900)the National Natural Science Foundation of China(32222044,22104147)+5 种基金Shenzhen Municipal Science and Technology Innovation Council(RCYX20210609103823046)Youth Innovation Promotion Association CAS(2021359)Natural Science Foundation of Guangdong(2020A1515111130)Guangdong Provincial Key Laboratory of Synthetic Genomics(2019B030301006)Shenzhen Science and Technology Program(KQTD20180413181837372)Shenzhen Outstanding Talents Training Fund.
文摘Virus is a kind of microorganism and possesses simple structure and contains one nucleic acid,which must be replicated using the host cell system.It causes large-scale infectious diseases and poses serious threats to the health,social well-being,and economic conditions of millions of people worldwide.Therefore,there is an urgent need to develop novel strategies for accurate diagnosis of virus infection to prevent disease transmission.Quantum dots(QDs)are typical fluorescence nanomaterials with high quantum yield,broad absorbance range,narrow and size-dependent emission,and good stability.QDs-based nanotechnology has been found to be effective method with rapid response,easy operation,high sensitivity,and good specificity,and has been widely applied for the detection of different viruses.However,until now,no systematic and critical review has been published on this important research area.Hence,in this review,we aim to provide a comprehensive coverage of various QDs-based virus detection methods.The fundamental investigations have been reviewed,including information related to the synthesis and biofunctionalization of QDs,QDs-based viral nucleic acid detection strategies,and QDs-based immunoassays.The challenges and perspectives regarding the potential application of QDs for virus detection is also discussed.
基金supported by the National Key Research and Development Program of China(No.2021YFA0910900)the National Natural Science Foundation(No.22104147)+4 种基金Youth Innovation Promotion Association CAS(No.2021359)the Natural Science Foundation of Guangdong(Nos.2018B030306046 and 2020A1515111130)Guangdong Provincial Key Laboratory of Synthetic Genomics(No.2019B030301006)Shenzhen Science and Technology Program(No.KQTD20180413181837372)Shenzhen Outstanding Talents Training Fund.
文摘The global pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus has necessitated rapid,easy-to-use,and accurate diagnostic methods to monitor the virus infection.Herein,a ratiometric fluorescence enzyme-linked immunosorbent assay(ELISA)was developed using Si-fluorescein isothiocyanate nanoparticles(FITC NPs)for detecting SARSCoV-2 nucleocapsid(N)protein.Si-FITC NPs were prepared by a one-pot hydrothermal method using 3-aminopropyl triethoxysilane(APTES)-FITC as the Si source.This method did not need post-modification and avoided the reduction in quantum yield and stability.The p-nitrophenyl(pNP)produced by the alkaline phosphatase(ALP)-mediated hydrolysis of pnitrophenyl phosphate(pNPP)could quench Si fluorescence in Si-FITC NPs via the inner filter effect.In ELISA,an immunocomplex was formed by the recognition of capture antibody/N protein/reporter antibody.ALP-linked secondary antibody bound to the reporter antibody and induced pNPP hydrolysis to specifically quench Si fluorescence in Si-FITC NPs.The change in fluorescence intensity ratio could be used for detecting N protein,with a wide linearity range(0.01-10.0 and 50-300 ng/mL)and low detection limit(0.002 ng/mL).The concentration of spiked SARS-CoV-2 N protein could be determined accurately in human serum.Moreover,this proposed method can accurately distinguish coronavirus disease 2019(COVID-19)and non-COVID-19 patient samples.Therefore,this simple,sensitive,and accurate method can be applied for the early diagnosis of SARS-CoV-2 virus infection.
基金supported by the National Key Research and Development Program of China(No.2021YFA0910900)the Sino-German rapid response funding call for COVID-19 related research(No.C-0008)+6 种基金the National Natural Science Foundation of China(Nos.32222044 and 22104147)Shenzhen Municipal Science and Technology Innovation Council(No.RCYX20210609103823046)Youth Innovation Promotion Association CAS(No.2021359)Natural Science Foundation of Guangdong(Nos.2018B030306046 amd 2020A1515111130)Guangdong Provincial Key Laboratory of Synthetic Genomics(No.2019B030301006)Shenzhen Science and Technology Program(No.KQTD20180413181837372)Shenzhen Outstanding Talents Training Fund.
文摘Coronavirus disease 2019(COVID-19)highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission.Here,we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles(NPs)for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)nucleocapsid protein(N protein).The synthesis of Si-FITC NPs did not need post-modification,which addressed the issue of quantum yield reduction during the coupling reaction.Si-FITC NPs showed two distinct peaks,Si fluorescence atλem=385 nm and FITC fluorescence atλem=490 nm.In the presence of KMnO_(4),Si fluorescence was decreased and FITC fluorescence was enhanced.Briefly,in the presence of N protein,catalase(CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates.Subsequently,hydrogen peroxide(H_(2)O_(2))and Si-FITC NPs/KMnO_(4)were injected into the microplate together.The decomposition of H_(2)O_(2)by CAT resulted in remaining of KMnO_(4),which changed the fluorescence intensity ratio of Si-FITC NPs.The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL,and the detection limit was 0.003 ng/mL,which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL.The N protein concentration can be accurately determined in human serum.Furthermore,the COVID-19 and non-COVID-19 patients were distinguishable by this method.Therefore,the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity.
基金This work was supported by Strategic Priority Research Program of the Chinese Academy of Sciences,China(XDB29050100)National Natural Science Foundation(21890743,31725002)+4 种基金Youth Innovation Promotion Association CAS(2021359)Natural Science Foundation of Guangdong(2018B030306046,2020A1515111130)Shenzhen Science and Technology Program(KQTD20180413181837372)Guangdong Provincial Key Laboratory of Synthetic Genomics(2019B030301006)Shenzhen Outstanding Talents Training Fund.
文摘Dear Editor,Severe acute respiratory syndrome coronavirus 2(SARSCoV-2)was identified as the pathogen causing the coronavirus disease(COVID-19),which sometimes resulted in fatal pneumonia(Hu et al.,2021).SARS-CoV-2 is a biosafety level 3(BSL-3)pathogen,and the requirement for high containment conditions is a bottleneck for basic research on viral biology.To help general researchers who wish to study SARS-CoV-2 but do not have access to a BSL-3 facility,a system that(1)can mimic the real life cycle of the virus;(2)allows easy genetic manipulation;and(3)shows high biosafety in BSL-2 laboratory is required.