期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation 被引量:1
1
作者 He-Liang Huang Xiao-Yue Xu +5 位作者 Chu Guo guojing tian Shi-Jie Wei Xiaoming Sun Wan-Su Bao Gui-Lu Long 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第5期23-72,共50页
Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Altho... Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field. 展开更多
关键词 quantum computing noisy-intermediate scale quantum variational quantum algorithms error mitigation circuit com-pilation benchmarking protocols classical simulation
原文传递
Local discrimination scheme for some unitary operations
2
作者 tianQing Cao Fei Gao +2 位作者 guojing tian ShuCui Xie QiaoYan Wen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2016年第9期39-45,共7页
It has been shown that for two different multipartite unitary operations U_1 and U_2, when tr(U_1~?U_2) = 0, they can always be perfectly distinguished by local operations and classical communication in the single-run... It has been shown that for two different multipartite unitary operations U_1 and U_2, when tr(U_1~?U_2) = 0, they can always be perfectly distinguished by local operations and classical communication in the single-run scenario. However, how to find the detailed scheme to complete the local discrimination is still a fascinating problem. In this paper, aiming at some U_1 and U_2 acting on the bipartite and tripartite space respectively, especially for U_1~?U_2 locally unitary equivalent to the high dimensional X-type hermitian unitary matrix V with trV = 0, we put forward the explicit local distinguishing schemes in the single-run scenario. 展开更多
关键词 unitary operations local discrimination local numerical range
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部