The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However,the underlying mechanisms of the beneficial effects of exercise have ...Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However,the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated.Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection.However,standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective,high-quality animal studies using exercise to prevent and treat cardiovascular diseases.In our review,we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training,emphasizing the appropriate measurements and analysis in these chronic exercise models.We also provide recommendations for optimal design of animal exercise studies in cardiovascular research,including the choice of exercise models,control of exercise protocols,exercise at different stages of disease,and other considerations,such as age,sex,and genetic background.We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.展开更多
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金This work was supported by grants from the National Key Research and Development Project(2020YFA0803800 to YB)National Natural Science Foundation of China(82020108002 and 81911540486 to JX,81772444 to LW,81772466 to RD)+2 种基金Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-09-E00042 to JX)Science and Technology Commission of Shanghai Municipality(18410722200 and 17010500100 to JX)“Dawn”Program of the Shanghai Education Commission(19SG34 to JX)。
文摘Growing evidence has demonstrated exercise as an effective way to promote cardiovascular health and protect against cardiovascular diseases However,the underlying mechanisms of the beneficial effects of exercise have yet to be elucidated.Animal exercise studies are widely used to investigate the key mechanisms of exercise-induced cardiovascular protection.However,standardized procedures and well-established evaluation indicators for animal exercise models are needed to guide researchers in carrying out effective,high-quality animal studies using exercise to prevent and treat cardiovascular diseases.In our review,we present the commonly used animal exercise models in cardiovascular research and propose a set of standard procedures for exercise training,emphasizing the appropriate measurements and analysis in these chronic exercise models.We also provide recommendations for optimal design of animal exercise studies in cardiovascular research,including the choice of exercise models,control of exercise protocols,exercise at different stages of disease,and other considerations,such as age,sex,and genetic background.We hope that this position paper will promote basic research on exercise-induced cardiovascular protection and pave the way for successful translation of exercise studies from bench to bedside in the prevention and treatment of cardiovascular diseases.