期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis 被引量:2
1
作者 guolong zhao Biao zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
Oxidation mechanism of high-volume fraction SiCp/Al composite under laser irradiation and subsequent machining
2
作者 Hanliang Liu guolong zhao +5 位作者 Zhiwen Nian Zhipeng Huang Kai Yang Conghua Liu Peng Wang Zhenkuan Diao 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期34-47,共14页
Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as ra... Conventional mechanical machining of a composite material comprising an aluminum matrix reinforced with a high volume fraction of SiC particles(hereinafter referred to as an SiCp/Al composite)faces problems such as rapid tool wear,high specific cutting force,and poor surface integrity.Instead,a promising method for solving these problems is laser-induced oxidation-assisted milling(LOAM):under laser irradiation,the local workpiece material reacts with oxygen,thus forming loose and porous oxides that are easily removed.In the present work,the oxidation mechanism of SiCp/Al irradiated by a nanosecond pulsed laser is studied to better understand the laser-induced oxidation behavior and control the characteristics of the oxides,with laser irradiation experiments performed on a 65%SiCp/Al composite with various laser parameters and auxiliary gases(oxygen,nitrogen,and argon).With increasing laser pulse energy density,both the ablated groove depth and the width of the heat-affected zone increase.When oxygen is used as the auxiliary gas,an oxide layer composed of SiO_(2)and Al2O3 forms,and CO_(2)is produced and escapes from the material,thereby forming pores in the oxides.However,when nitrogen or argon is used as the auxiliary gas,a recast layer is produced that is relatively difficult to remove.Under laser irradiation,the sputtered material reacts with oxygen to form oxides on both sides of the ablated groove,and as the laser scanning path advances,the produced oxides accumulate to form an oxide layer.LOAM and conventional milling are compared using the same milling parameters,and LOAM is found to be better for reduced milling force and tool wear and improved machined surface quality. 展开更多
关键词 SiCp/Al composite Oxidation mechanism Nanosecond pulsed laser Laser-induced oxidation Heat-affected zone
下载PDF
Cutting force model and damage formation mechanism in milling of 70wt%Si/Al composite 被引量:3
3
作者 guolong zhao Lianjia XIN +3 位作者 Liang LI Yang ZHANG Ning HE Hans Nørgaard HANSEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期114-128,共15页
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many appl... High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites. 展开更多
关键词 posite Cutting force analytical model Cutting-edge radius Surface quality Damage formation mechanism
原文传递
“微言大义”:职场闲谈的影响因素与双刃剑效应
4
作者 赵国龙 王楠 《中国人力资源开发》 CSSCI 北大核心 2023年第8期82-101,共20页
职场闲谈是指工作场所员工之间浅显或琐碎的交流,交流内容通常与工作任务无关,相关研究在组织科学中处于萌芽阶段,已有研究呈现一定程度的碎片化,亟待系统梳理。为充分呈现职场闲谈的本体特征和诺莫网络,本文回顾了职场闲谈的内涵、测... 职场闲谈是指工作场所员工之间浅显或琐碎的交流,交流内容通常与工作任务无关,相关研究在组织科学中处于萌芽阶段,已有研究呈现一定程度的碎片化,亟待系统梳理。为充分呈现职场闲谈的本体特征和诺莫网络,本文回顾了职场闲谈的内涵、测量、动机与功能,基于互动仪式理论、微角色转换理论、自我损耗理论、涟漪效应等视角尝试厘清职场闲谈的理论基础,进一步对职场闲谈的诺莫网络进行分析,分别讨论了职场闲谈在不同水平上(包括跨文化水平、组织水平和个体水平)的影响因素。本文基于“认知-情绪”双路径,归纳式地提出职场闲谈可能对部分个体结果产生双刃剑效应,个体自我监督和互动关系性质在职场闲谈对个体结果的作用过程中起到调节作用。未来研究需要深化职场闲谈的概念,系统探讨职场闲谈发生的过程机制和边界条件,为组织有效进行职场闲谈管理提供理论依据。 展开更多
关键词 职场闲谈 互动仪式 微角色转换 涟漪效应 双刃剑效应
原文传递
Machining deformation of single-sided component based on finishing allowance optimization 被引量:10
5
作者 Xiaoyue LI Liang LI +7 位作者 Yinfei YANG guolong zhao Ning HE Xiaocen DING Yaowen SHI Longxin FAN Hui LAN Muhammad JAMIL 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第9期2434-2444,共11页
Owing to reliability and high strength-to-weight ratio,large thin-walled components are widely used in the aviation and aerospace industry.Due to the complex features and sequence involved in the machining process of ... Owing to reliability and high strength-to-weight ratio,large thin-walled components are widely used in the aviation and aerospace industry.Due to the complex features and sequence involved in the machining process of large thin-walled components,machining deformation of component is easy to exceed the specification.In order to address the problem,it is important to retain the appropriate finishing allowance.To find the overall machining deformation,finishing allowance-induced deformation(web finishing allowance,sidewall finishing allowance)and initial residual stress-induced deformation were considered as major factors.Meanwhile,machined surface residual stress-induced deformation,clamping stress-induced deformation,thermal deformation,gravity-induced deformation and inertial force-induced deformation were neglected in the optimization model.Six-peak Gaussian function was introduced to fit the initial residual stress.Based upon the obtained function of initial residual stress,a deformation prediction model between initial residual stress and finishing allowance was established to attain the finishing allowanceinduced deformation.In addition,linear programming optimization model based on the simplex algorithm was developed to optimize the overall machining deformation.Results have concluded that the overall machining deformation reached the minimum value when sidewall finishing allowance and web finishing allowance varied between 1 and 2 mm.Additionally,web finishing allowance-induced deformation and sidewall finishing allowance-induced deformation were1.05 mm and 0.7 mm.Furthermore,the machining deformation decreased to 0.3–0.38 mm with the application of optimized finishing allowance allocation strategy,which made 39–56%reduction of the overall machining deformation compared to that in conventional method. 展开更多
关键词 Finishing allowance Linear programming Machining deformation Residual stresses Simplex algorithm
原文传递
Laser-induced oxidation assisted micro milling of high aspect ratio microgroove on WC-Co cemented carbide 被引量:8
6
作者 guolong zhao Hongjun XIA +3 位作者 Yang ZHANG Liang LI Ning HE Hans Nφrgaard HANSEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期465-475,共11页
Severe tool wear and poor surface quality are the main problems during micro machining of cemented carbide.In this work,an innovative hybrid process of laser-induced oxidation assisted micro milling(LOMM)was proposed ... Severe tool wear and poor surface quality are the main problems during micro machining of cemented carbide.In this work,an innovative hybrid process of laser-induced oxidation assisted micro milling(LOMM)was proposed to solve the problems.A nanosecond laser was utilized to induce oxidation of the WC-20%Co material,producing loose oxide which was easy to remove.The micro machinability of the material was improved by laser-induced oxidation.The oxidation mechanisms of cemented carbide were studied.A microgroove with a depth of 2.5 mm and aspect ratio of 5 was fabricated successfully.The milling force,surface quality and tool wear mechanisms were investigated.For comparison,a microgroove was also fabricated with conventional micro milling(COMM)using identical milling parameters.Results revealed that in LOMM the milling force and tool wear rate were extremely low during removing the oxide.The machined surface quality and dimensional accuracy achieved by LOMM were superior to those obtained by COMM.The surface roughness Saof the microgroove bottom reached 88 nm in LOMM,while the cross-sectional geometry of the microgroove was a trapezoid.Perpendicularity of the microgroove sidewall machined by LOMM was better than that by COMM.The tool wear forms in LOMM were coating spalling and slight tool nose breakage.Compared with COMM,the tool life in LOMM was prolonged significantly.It indicates that the proposed hybrid process is an effective and efficient way to fabricate high aspect ratio micro-features with high dimensional accuracy. 展开更多
关键词 Cemented carbide High aspect ratio Laser-induced oxidation Micro milling Microgroove Tool wear
原文传递
Energy principle and material removal sequence optimization method in machining of aircraft monolithic parts 被引量:3
7
作者 Yinfei YANG Longxin FAN +5 位作者 Liang LI guolong zhao Ning HAN Xiaoyue LI Hui TIAN Ning HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2770-2781,共12页
In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and ... In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and stiffness reduction during the machining process depend on the material removal sequence.The essence of the stress redistribution is releasing the initial elastic strain energy.In the present study,the influence of the material removal sequence on the energy release is studied.Moreover,a novel optimization method is proposed for the material removal sequence.In order to evaluate the performance of the proposed method,the mechanism of the machining distortion is firstly analyzed based on the energy principle.Then a calculative model for the machining distortion of long beam parts is established accordingly.Moreover,an energy parameter related to the bending distortion and the procedure of the material removal sequence optimization is defined.Finally,the bending distortion analysis and material removal sequence optimization are performed on a long beam with a Z-shaped cross-section.Furthermore,simulation and experiments are carried out.The obtained results indicate that the optimized sequence results in a low distortion fluctuation and decreases the bending distortion. 展开更多
关键词 Aircraft monolithic part DISTORTION Initial residual stress Material removal sequence Strain energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部