We investigated the plasmon-exciton interactions in an individual gold nanorod(GNR)with monolayer MoS2 at room temperature with the single-particle spectroscopy technique.To control the plasmon-exciton interaction,we ...We investigated the plasmon-exciton interactions in an individual gold nanorod(GNR)with monolayer MoS2 at room temperature with the single-particle spectroscopy technique.To control the plasmon-exciton interaction,we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect.The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2,which were caused by the plasmon-induced resonance energy transfer effect.The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy.Also,we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid.These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.展开更多
Singularities in the spectra of open systems, known as exceptional points(EPs), have been shown to exhibit nontrivial topological properties and enhanced sensitivities. Here, we propose a novel approach to realize the...Singularities in the spectra of open systems, known as exceptional points(EPs), have been shown to exhibit nontrivial topological properties and enhanced sensitivities. Here, we propose a novel approach to realize the EPs in a plasmon-exciton hybrid system and explore their applications in enhanced nanoscale sensing technology.We consider a plasmon-exciton system composed of a gold nanorod and a monolayer WSe_(2). By controlling the geometric parameters of the nano-hybrid system, we obtain simultaneous coalescence of the resonance frequencies and loss rates of the hybrid system, which is a unique feature of EPs. Numerical simulations show its application in enhanced nanoscale sensing for environmental refractive indices. Our work opens the way to a new class of sensors based on EP-enhanced sensing, with intrinsic nanoscale sensitivity due to the sub-diffractionlimit size of the plasmon-exciton nano-hybrid system.展开更多
基金This work was supported by the National Key Research and Development Program of China(grant No.2018YFB2200401)the National Natural Science Foundation of China(grant Nos.91950111,61521004 and 11527901).
文摘We investigated the plasmon-exciton interactions in an individual gold nanorod(GNR)with monolayer MoS2 at room temperature with the single-particle spectroscopy technique.To control the plasmon-exciton interaction,we tuned the local surface plasmon resonance of an individual GNR in-situ by employing the photothermal reshaping effect.The scattering spectra of the GNR-MoS2 hybrids exhibited two dips at the frequencies of the A and B excitons of monolayer MoS2,which were caused by the plasmon-induced resonance energy transfer effect.The resonance energy transfer rate increased when the surface plasmon resonance of the nanorod matched well with the exciton transition energy.Also,we demonstrated that the plasmon-enhanced fluorescence process dominated the photoluminescence of the GNR-MoS2 hybrid.These results provide a flexible way to control the plasmon-exciton interaction in an all-solid-state operating system at room temperature.
基金National Key Research and Development Program of China (2018YFB2200401)National Natural Science Foundation of China (11527901, 11974031,12174009, 61521004, 91950111)。
文摘Singularities in the spectra of open systems, known as exceptional points(EPs), have been shown to exhibit nontrivial topological properties and enhanced sensitivities. Here, we propose a novel approach to realize the EPs in a plasmon-exciton hybrid system and explore their applications in enhanced nanoscale sensing technology.We consider a plasmon-exciton system composed of a gold nanorod and a monolayer WSe_(2). By controlling the geometric parameters of the nano-hybrid system, we obtain simultaneous coalescence of the resonance frequencies and loss rates of the hybrid system, which is a unique feature of EPs. Numerical simulations show its application in enhanced nanoscale sensing for environmental refractive indices. Our work opens the way to a new class of sensors based on EP-enhanced sensing, with intrinsic nanoscale sensitivity due to the sub-diffractionlimit size of the plasmon-exciton nano-hybrid system.