A suitable channel structure can lead to efficient gas distribution and significantly improve the power density of fuel cells.In this study,the influence of two channel design parameters is investigated,namely,the rat...A suitable channel structure can lead to efficient gas distribution and significantly improve the power density of fuel cells.In this study,the influence of two channel design parameters is investigated,namely,the ratio of the channel width to the bipolar plate ridge width(i.e.,the channel ridge ratio)and the channel depth.The impact of these parameters is evaluated with respect to the flow pattern,the gas composition distribution,the temperature field and the fuel cell output capability.The results show that a decrease in the channel ridge ratio and an increase in the channel depth can effectively make the distributions of velocity,temperature and concentration more uniform in each channel and improve the output capability of the fuel cell.An increase in the channel ridge ratio and depth obviously reduces the flow resistance and improves the flow characteristics.展开更多
Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles.Since fuel cells cannot recover energy and have a slow dynamic response,they need to b...Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles.Since fuel cells cannot recover energy and have a slow dynamic response,they need to be used with different power sources.Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research.This paper proposes an adaptive equivalent fuel minimum consumption strategy(AECMS)to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors(EF)in traditional ECMS.In this method,the kinematics interval is used to update the equivalent factor by considering the penalty term of energy recovery on SOC changes.Finally,the optimized equivalent factor is substituted into the optimization objective function to achieve efficient energy regulation.Simulation results under the New European Driving Cycle show that compared with the traditional ECMS based on fixed SOC benchmarks,the proposed method improves fuel economy by 1.7%while ensuring vehicle power and increases SOC by 30%.展开更多
The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new...The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.展开更多
Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem rela...Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.展开更多
The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing...The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion.展开更多
Multiphase simulations based on the VOF(Volume of Fluid)approach,used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model,have been conducted to study the behavior of an injector noz...Multiphase simulations based on the VOF(Volume of Fluid)approach,used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model,have been conducted to study the behavior of an injector nozzle as a function of relevant structural parameters(such as the spray hole diameter and length).The related performances have been optimized in the framework of orthogonal experimental design and range analysis methods.As made evident by the results,as the spray hole diameter increases from 0.10 to 0.20 mm,the outlet massflow rate grows by 243.23%.A small diameter of the spray hole,however,has a beneficial effect in terms of cavitation suppression.Moreover,rounding the spray hole can effectively increase the outlet massflow rate and improve theflow characteristics while mitigating the cavitation phenomenon inside the spray hole.In particular,with the optimized nozzle design,the outlet massflow rate can be increased by 13.33%,while the fuel vapor volume is reduced by 33.53%,thereby,leading to significant improvements in terms offlow characteristics and cavitation control.展开更多
A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these ...A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight.展开更多
A seawater temperature sensing method based on polydimethylsiloxane-coated (PDMS-coated) microfiber knot resonator (MKR) is proposed, which has the advantages of high sensitivity and weak salinity dependence. The depe...A seawater temperature sensing method based on polydimethylsiloxane-coated (PDMS-coated) microfiber knot resonator (MKR) is proposed, which has the advantages of high sensitivity and weak salinity dependence. The dependences of the temperature sensitivity on fiber diameter, coating thickness and probing wavelength are theoretically investigated and the range of coating thickness for weak salinity dependence is obtained. By optimizing the parameters of the seawater temperature sensing system, when the probing wavelength is 1550 nm, the fiber diameter is 1 μm, and the coating thickness is 5 μm, the sensitivity can reach to 0.197 nm/°C. Results shown here are beneficial to find the optimal parameters for the temperature sensors with high sensitivity and weak salinity dependence.展开更多
The complex evolutionary history of the Qinghai-Tibetan Plateau and its surrounding areas,including the continental blocks(Indian,Lhasa,South Qiangtang,Tarim,Olongbuluk,Central Qilian,Alxa,North China,Yangtze,Central ...The complex evolutionary history of the Qinghai-Tibetan Plateau and its surrounding areas,including the continental blocks(Indian,Lhasa,South Qiangtang,Tarim,Olongbuluk,Central Qilian,Alxa,North China,Yangtze,Central Iran and Oman)and the orogenic belts between them,has long been the frontier in Earth science research.The Cryogenian and Ediacaran strata are extensively distributed in these blocks.Specifically,relatively complete Cryogenian and Ediacaran successions have been discovered in Oman,Indian,Yangtze,and Tarim blocks,while only the Ediacaran successions have been reported in Iran,the South Qiangtang,Central Qilian,Alxa,and North China blocks.Based on previous studies together with the integration of new materials and advancement obtained through the Second Tibetan Plateau Scientific Expedition and Research,this review aims to synthesize a correlative stratigraphic framework of the representative Cryogenian and Ediacaran sequences from the Qinghai-Tibetan Plateau and its surrounding areas.Furthermore,the Cryogenian and Ediacaran biotas and major geological events in these areas are comprehensively discussed in aspects of current research status.The results indicate that,in general,Ediacaran fossils of each area exhibit distinct features in preservation and assemblage composition,but the typical late Ediacaran fossils Cloudina and Shaanxilithes have been reported from most of these areas.In addition to the two global Cryogenian glaciations,late Ediacaran glaciogenic deposits are extensively recorded in the areas within and around the northern QinghaiTibetan Plateau(including the North China,Alxa,Central Qilian,Olongbuluk,and Tarim blocks,and the North Qilian Accretionary Belt),as well as central and southern Iran.However,further research is required to determine the age,distribution,and origin of these late Ediacaran glaciogenic deposits.Meanwhile,the middle Ediacaran DOUNCE/Shuram Excursion is widely documented in the Qinghai-Tibetan Plateau and its surrounding areas.The available data show that,after the break-up of the Rodinia supercontinent,most of the continental blocks in the areas were located along the northern margin of East Gondwana and a few(such as North China)were located between the Gondwana and Laurentia.In general,the paleogeographic evolution of most of these blocks during the Cryogenian and Ediacaran remains disputatious,necessitating further research to resolve the controversies surrounding their paleogeographic reconstruction models during this critical time interval.展开更多
The Qinghai-Tibetan Plateau and its surrounding areas have a long and complex tectonic evolutionary history.Cratons and blocks,such as northern India,Lhasa,Qiangtang,Qaidam and Central Qilian,and their in-between orog...The Qinghai-Tibetan Plateau and its surrounding areas have a long and complex tectonic evolutionary history.Cratons and blocks,such as northern India,Lhasa,Qiangtang,Qaidam and Central Qilian,and their in-between orogenic belts constitute the main part of the Qinghai-Tibetan Plateau.During the Cambrian Period,most of these cratons and blocks were on the northwestern periphery of Gondwana,and were associated with the surrounding blocks,e.g.Arabian,Central Iran,Afghanistan,Tarim,Alxa,North China,South China and Sibumasu through the Proto-Tethys Ocean.The Cambrian stratigraphic sequences on these stable blocks are composed of mixed siliciclastic and carbonate rocks deposited in the shallow-water marine environments,and contain the trilobite assemblages of shelf facies.The Cambrian stratigraphic sequences in the Qilian tectonic belts,however,are characterized by the intermediate-basic igneous rocks and silicates formed in the Proto-Tethys Ocean,and contain the trilobite assemblages of deep-water slope facies.Combining with previous data,field observations and newly discovered fossils through funding by the Second Tibetan Plateau Scientific Expedition and Research,the general characteristics of the Cambrian strata in different tectonic units of the Qinghai-Tibetan Plateau and its surrounding areas have been summarized in this paper.Furthermore,efforts have been made to subdivide and correlate the Cambrian strata across these areas by utilizing available biostratigraphic and geochronological data.As a result,a comprehensive litho-and biostratigraphy chart has been compiled.Finally,from the biogeographic perspective,this paper also provides a brief overview of the Cambrian paleogeographical reconstruction of the major tectonic blocks,and discusses the problems associated with the evolution of the ProtoTethys tectonic belt.展开更多
The Cambrian Period is the first period of the Phanerozoic Eon and witnessed the explosive appearance of the metazoans, representing the beginning of the modern earth-life system characterized by animals in contrary t...The Cambrian Period is the first period of the Phanerozoic Eon and witnessed the explosive appearance of the metazoans, representing the beginning of the modern earth-life system characterized by animals in contrary to the Precambrian earth-life system dominated by microbial life. However, understanding Cambrian earth-life system evolution is hampered by regional and global stratigraphic correlations due to an incomplete chronostratigraphy and consequent absence of a highresolution timescale. Here we briefly review the historical narrative of the present international chronostratigraphic framework of the Cambrian System and summarize recent advances and problems of the undefined Cambrian stage GSSPs, in particular we challenge the global correlation of the GSSP for the Cambrian base, in addition to Cambrian chemostratigraphy and geochronology. Based on the recent advances of the international Cambrian chronostratigraphy, revisions to the Cambrian chronostratigraphy of China, which are largely based on the stratigraphic record of South China, are suggested, and the Xiaotanian Stage is newly proposed for the Cambrian Stage 2 of China. We further summarize the integrative stratigraphy of South China, North China and Tarim platforms respectively with an emphasis on the facies variations of the Precambrian-Cambrian boundary successions and problems for identification of the Cambrian base in the different facies and areas of China. Moreover, we discuss stratigraphic complications that are introduced by poorly fossiliferous dolomite successions in the upper Cambrian System which are widespread in South China, North China and Tarim platforms.展开更多
A new Chengjiang-type fossil assemblage is reported herein from the lower part of the Hongjingshao Formation at Xiazhuang village of Chenggong,Kunming,Yunnan.The fossil assemblage,named as Xiazhuang fossil assemblage,...A new Chengjiang-type fossil assemblage is reported herein from the lower part of the Hongjingshao Formation at Xiazhuang village of Chenggong,Kunming,Yunnan.The fossil assemblage,named as Xiazhuang fossil assemblage,yields predominantly soft-bodied fossils,including arthropods,brachiopods,priapulids,lobopods and some problematic taxa,with arthropods being the most dominant group.Preservation and composition of the fossil assemblage are very similar to the typical Chengjiang biota,which is preserved in the middle Yu’anshan Formation in the large area of eastern Yunnan.The associated trilobites demonstrate that the soft-bodied fossil assemblage belongs to the late Qiongzhusian in age(Stage 3,Cambrian),suggesting that the Hongjingshao Formation is probably a diachronous lithostratigraphic unit ranging from the upper Qiongzhusian to the lower Canglangpuan stages in eastern Yunnan.The fossil assemblage from the Xiazhuang area fills up the missing link between the typical older Chengjiang biota and the younger Malong and Guanshan biotas,making eastern Yunnan a unique area in the world to reveal the early evolutionary history of animals and palaeocommunity dynamics during the‘‘Cambrian explosion’’.展开更多
The Neoproterozoic-Cambrian(N-C) and Permian-Triassic(P-T) transitions have been regarded the two most critical transitions in earth history because of the explosive biological radiation in the early Cambrian(the Camb...The Neoproterozoic-Cambrian(N-C) and Permian-Triassic(P-T) transitions have been regarded the two most critical transitions in earth history because of the explosive biological radiation in the early Cambrian(the Cambrian Explosion) and the largest mass extinction at the end-Permian.Previous studies suggest that these two critical transitions showed certain comparability in major evolutionary events.In other words,a series of biological,geological,and geochemical events that had happened in the N-C transition occurred repeatedly during the P-T transition.Those events included continental re-configuration related to the deep mantle dynamics,global-scale glaciations,large C-,Sr-,and S-isotope perturbations indicating atmospheric and oceanic changes,abnormal precipitation of carbonates,and associated multiple biological radiations and mass extinctions.The coupling of those events in both N-C and P-T transitions suggests that deep mantle dynamics could be a primary mechanism driving dramatic changes of environment on the earth's surface,which in turn caused major biological re-organizations.A detailed comparison of those events during the two critical transitions indicates that despite their general comparability,significant differences do exist in magnitude,duration,and frequency.The supercontinent Rodinia began to rift before the Snowball Earth time.By contrast,the supercontinent Pangea entered the dispersal stage after the greatest glaciation from the Late Carboniferous to Cisuralian.Quantitative data and qualitative analyses of different fossil groups show a more profound mass extinction during the N-C transition than at the end-Permian in terms of ecosystem disruption.This is indicated by the disappearance of the whole Ediacaran biota at the N-C boundary.The subsequent appearances of many new complex animals at phylum level in the early Cambrian mark the establishment of a brand new ecosystem.However,the end-Permian mass extinction is manifested mainly by the extinction of many different taxa at class and order levels.Although it caused the extinction of 95% of marine species and 75% of terrestrial species as well as complete cessation of coal and reef deposits after the mass extinction,this high-level biological re-organization still occurred within an established ecosystem,however drastic it may seem.Survived or Lazarus taxa re-occupied the existing ecospace in a relatively short duration after the end-Permian mass extinction.C-isotope excursions display large perturbations during both transitions,yet also in different magnitudes and frequencies,which suggest different atmospheric and oceanic conditions.The recurrent geological and geochemical events as well as the coupled major biological turnovers during the two transitions provide new clues to understanding the interplays among the earth-life system.Thus,it is essential to carry out multidisciplinary studies from the deep internal system to the surface of the Earth as a whole in order to unravel the interactions of different spheres of the earth.展开更多
An environment control and life support system(ECLSS) is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research pro...An environment control and life support system(ECLSS) is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system. An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters. However, its computational efficiency is too low to satisfy the real-time data interaction, especially for the complex ECLSS system running on a PC cluster. The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency. This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method. A temperature and humidity control subsystem(THCS) is firstly established, and its numerical stability is analyzed by using the eigenvalue estimation theory. Furthermore, an adaptive operator is proposed to avoid the potential instability problem. The stability and accuracy of the proposed method are investigated carefully. Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster.展开更多
基金This work was sponsored by the National Key R&D Program of China[Grant Number 2020YFB0106603]the Key R&D Program of Shandong Province[Grant Number 2020CXGC010404]the Undergraduate School of Shandong University,China[Grant Number 2022Y155].
文摘A suitable channel structure can lead to efficient gas distribution and significantly improve the power density of fuel cells.In this study,the influence of two channel design parameters is investigated,namely,the ratio of the channel width to the bipolar plate ridge width(i.e.,the channel ridge ratio)and the channel depth.The impact of these parameters is evaluated with respect to the flow pattern,the gas composition distribution,the temperature field and the fuel cell output capability.The results show that a decrease in the channel ridge ratio and an increase in the channel depth can effectively make the distributions of velocity,temperature and concentration more uniform in each channel and improve the output capability of the fuel cell.An increase in the channel ridge ratio and depth obviously reduces the flow resistance and improves the flow characteristics.
基金This work was supported by National Key R&D Program of China(Grant No.2020YFB0106603)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912).
文摘Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles.Since fuel cells cannot recover energy and have a slow dynamic response,they need to be used with different power sources.Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research.This paper proposes an adaptive equivalent fuel minimum consumption strategy(AECMS)to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors(EF)in traditional ECMS.In this method,the kinematics interval is used to update the equivalent factor by considering the penalty term of energy recovery on SOC changes.Finally,the optimized equivalent factor is substituted into the optimization objective function to achieve efficient energy regulation.Simulation results under the New European Driving Cycle show that compared with the traditional ECMS based on fixed SOC benchmarks,the proposed method improves fuel economy by 1.7%while ensuring vehicle power and increases SOC by 30%.
基金This work was supported by the National Key Research and Development Project of China(Grant No.2017YFB0103504)National Natural Science Foundation of China(Grant No.51576116).
文摘The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.
基金This work was supported by the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)。
文摘Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.
基金supported by the Natural Science Foundation Project of Shandong Provincial(Grant No.ZR2019MEE041)the open funds of National Engineering Laboratory of Mobile Source Emission Control Technology(Grant No.NELMS2019A01).
文摘The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion.
基金supported by the Shandong Province Key R&D Program(2021CXGC010207).
文摘Multiphase simulations based on the VOF(Volume of Fluid)approach,used in synergy with the cavitation Schnerr-Sauer method and the K-Epsilon turbulence model,have been conducted to study the behavior of an injector nozzle as a function of relevant structural parameters(such as the spray hole diameter and length).The related performances have been optimized in the framework of orthogonal experimental design and range analysis methods.As made evident by the results,as the spray hole diameter increases from 0.10 to 0.20 mm,the outlet massflow rate grows by 243.23%.A small diameter of the spray hole,however,has a beneficial effect in terms of cavitation suppression.Moreover,rounding the spray hole can effectively increase the outlet massflow rate and improve theflow characteristics while mitigating the cavitation phenomenon inside the spray hole.In particular,with the optimized nozzle design,the outlet massflow rate can be increased by 13.33%,while the fuel vapor volume is reduced by 33.53%,thereby,leading to significant improvements in terms offlow characteristics and cavitation control.
基金funded by National Engineering Laboratory for Mobile Source Emission Control Technology of China[Grant No.NELMS2019A01]the Undergraduate School of Shandong University,China[Grant No.2022Y155].
文摘A dedicated heat exchanger model is introduced for the optimization of heavy-duty diesel engines.The model is a prerequisite for the execution of CFD simulations,which are used to improve waste heat recovery in these systems.Several optimization methods coupled with different types of working fluids are compared in terms of exergy efficiency and heat exchanger complicity.The three considered optimization methods all lead to significant improvements in the R245fa and R1233zd systems with a comparatively low evaporation temperature.The optimal R245fa system has the highest efficiency increase(77.49%).The cyclopentane system displays the highest efficiency among the optimized ORC(Organic Rankine Cycle)systems,yet achieved by using a much heavier evaporator HEC(Heat Exchanging Core).In contrast,the 96.84%efficiency increase for the optimized R1233zd is achieved with only 68.96%evaporator weight.
文摘A seawater temperature sensing method based on polydimethylsiloxane-coated (PDMS-coated) microfiber knot resonator (MKR) is proposed, which has the advantages of high sensitivity and weak salinity dependence. The dependences of the temperature sensitivity on fiber diameter, coating thickness and probing wavelength are theoretically investigated and the range of coating thickness for weak salinity dependence is obtained. By optimizing the parameters of the seawater temperature sensing system, when the probing wavelength is 1550 nm, the fiber diameter is 1 μm, and the coating thickness is 5 μm, the sensitivity can reach to 0.197 nm/°C. Results shown here are beneficial to find the optimal parameters for the temperature sensors with high sensitivity and weak salinity dependence.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0706)the National Natural Science Foundation of China(Grant No.41921002)。
文摘The complex evolutionary history of the Qinghai-Tibetan Plateau and its surrounding areas,including the continental blocks(Indian,Lhasa,South Qiangtang,Tarim,Olongbuluk,Central Qilian,Alxa,North China,Yangtze,Central Iran and Oman)and the orogenic belts between them,has long been the frontier in Earth science research.The Cryogenian and Ediacaran strata are extensively distributed in these blocks.Specifically,relatively complete Cryogenian and Ediacaran successions have been discovered in Oman,Indian,Yangtze,and Tarim blocks,while only the Ediacaran successions have been reported in Iran,the South Qiangtang,Central Qilian,Alxa,and North China blocks.Based on previous studies together with the integration of new materials and advancement obtained through the Second Tibetan Plateau Scientific Expedition and Research,this review aims to synthesize a correlative stratigraphic framework of the representative Cryogenian and Ediacaran sequences from the Qinghai-Tibetan Plateau and its surrounding areas.Furthermore,the Cryogenian and Ediacaran biotas and major geological events in these areas are comprehensively discussed in aspects of current research status.The results indicate that,in general,Ediacaran fossils of each area exhibit distinct features in preservation and assemblage composition,but the typical late Ediacaran fossils Cloudina and Shaanxilithes have been reported from most of these areas.In addition to the two global Cryogenian glaciations,late Ediacaran glaciogenic deposits are extensively recorded in the areas within and around the northern QinghaiTibetan Plateau(including the North China,Alxa,Central Qilian,Olongbuluk,and Tarim blocks,and the North Qilian Accretionary Belt),as well as central and southern Iran.However,further research is required to determine the age,distribution,and origin of these late Ediacaran glaciogenic deposits.Meanwhile,the middle Ediacaran DOUNCE/Shuram Excursion is widely documented in the Qinghai-Tibetan Plateau and its surrounding areas.The available data show that,after the break-up of the Rodinia supercontinent,most of the continental blocks in the areas were located along the northern margin of East Gondwana and a few(such as North China)were located between the Gondwana and Laurentia.In general,the paleogeographic evolution of most of these blocks during the Cryogenian and Ediacaran remains disputatious,necessitating further research to resolve the controversies surrounding their paleogeographic reconstruction models during this critical time interval.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0706)the National Natural Science Foundation of China(Grant No.41921002)。
文摘The Qinghai-Tibetan Plateau and its surrounding areas have a long and complex tectonic evolutionary history.Cratons and blocks,such as northern India,Lhasa,Qiangtang,Qaidam and Central Qilian,and their in-between orogenic belts constitute the main part of the Qinghai-Tibetan Plateau.During the Cambrian Period,most of these cratons and blocks were on the northwestern periphery of Gondwana,and were associated with the surrounding blocks,e.g.Arabian,Central Iran,Afghanistan,Tarim,Alxa,North China,South China and Sibumasu through the Proto-Tethys Ocean.The Cambrian stratigraphic sequences on these stable blocks are composed of mixed siliciclastic and carbonate rocks deposited in the shallow-water marine environments,and contain the trilobite assemblages of shelf facies.The Cambrian stratigraphic sequences in the Qilian tectonic belts,however,are characterized by the intermediate-basic igneous rocks and silicates formed in the Proto-Tethys Ocean,and contain the trilobite assemblages of deep-water slope facies.Combining with previous data,field observations and newly discovered fossils through funding by the Second Tibetan Plateau Scientific Expedition and Research,the general characteristics of the Cambrian strata in different tectonic units of the Qinghai-Tibetan Plateau and its surrounding areas have been summarized in this paper.Furthermore,efforts have been made to subdivide and correlate the Cambrian strata across these areas by utilizing available biostratigraphic and geochronological data.As a result,a comprehensive litho-and biostratigraphy chart has been compiled.Finally,from the biogeographic perspective,this paper also provides a brief overview of the Cambrian paleogeographical reconstruction of the major tectonic blocks,and discusses the problems associated with the evolution of the ProtoTethys tectonic belt.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41672029, 41661134048)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB18000000, XDB10010101)
文摘The Cambrian Period is the first period of the Phanerozoic Eon and witnessed the explosive appearance of the metazoans, representing the beginning of the modern earth-life system characterized by animals in contrary to the Precambrian earth-life system dominated by microbial life. However, understanding Cambrian earth-life system evolution is hampered by regional and global stratigraphic correlations due to an incomplete chronostratigraphy and consequent absence of a highresolution timescale. Here we briefly review the historical narrative of the present international chronostratigraphic framework of the Cambrian System and summarize recent advances and problems of the undefined Cambrian stage GSSPs, in particular we challenge the global correlation of the GSSP for the Cambrian base, in addition to Cambrian chemostratigraphy and geochronology. Based on the recent advances of the international Cambrian chronostratigraphy, revisions to the Cambrian chronostratigraphy of China, which are largely based on the stratigraphic record of South China, are suggested, and the Xiaotanian Stage is newly proposed for the Cambrian Stage 2 of China. We further summarize the integrative stratigraphy of South China, North China and Tarim platforms respectively with an emphasis on the facies variations of the Precambrian-Cambrian boundary successions and problems for identification of the Cambrian base in the different facies and areas of China. Moreover, we discuss stratigraphic complications that are introduced by poorly fossiliferous dolomite successions in the upper Cambrian System which are widespread in South China, North China and Tarim platforms.
基金supported by the Program of Chinese Academy of Sciences(KZZD-EW-02-2)the National Basic Research Program of China(2013CB835006)+2 种基金the National NaturalScience Foundation of China(41002002,41372021,J1210006)the Natural Science Foundation of Jiangsu Province(BK2012893)the National Science and Technology Major Project(2011ZX05008)
文摘A new Chengjiang-type fossil assemblage is reported herein from the lower part of the Hongjingshao Formation at Xiazhuang village of Chenggong,Kunming,Yunnan.The fossil assemblage,named as Xiazhuang fossil assemblage,yields predominantly soft-bodied fossils,including arthropods,brachiopods,priapulids,lobopods and some problematic taxa,with arthropods being the most dominant group.Preservation and composition of the fossil assemblage are very similar to the typical Chengjiang biota,which is preserved in the middle Yu’anshan Formation in the large area of eastern Yunnan.The associated trilobites demonstrate that the soft-bodied fossil assemblage belongs to the late Qiongzhusian in age(Stage 3,Cambrian),suggesting that the Hongjingshao Formation is probably a diachronous lithostratigraphic unit ranging from the upper Qiongzhusian to the lower Canglangpuan stages in eastern Yunnan.The fossil assemblage from the Xiazhuang area fills up the missing link between the typical older Chengjiang biota and the younger Malong and Guanshan biotas,making eastern Yunnan a unique area in the world to reveal the early evolutionary history of animals and palaeocommunity dynamics during the‘‘Cambrian explosion’’.
基金supported by National Basic Research Program of China (Grant Nos. 2006CB860400, 2011CB808905)Chinese Academy of Sciences (Grant No. KZCX2-YW-Q08-4)NSFC and the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘The Neoproterozoic-Cambrian(N-C) and Permian-Triassic(P-T) transitions have been regarded the two most critical transitions in earth history because of the explosive biological radiation in the early Cambrian(the Cambrian Explosion) and the largest mass extinction at the end-Permian.Previous studies suggest that these two critical transitions showed certain comparability in major evolutionary events.In other words,a series of biological,geological,and geochemical events that had happened in the N-C transition occurred repeatedly during the P-T transition.Those events included continental re-configuration related to the deep mantle dynamics,global-scale glaciations,large C-,Sr-,and S-isotope perturbations indicating atmospheric and oceanic changes,abnormal precipitation of carbonates,and associated multiple biological radiations and mass extinctions.The coupling of those events in both N-C and P-T transitions suggests that deep mantle dynamics could be a primary mechanism driving dramatic changes of environment on the earth's surface,which in turn caused major biological re-organizations.A detailed comparison of those events during the two critical transitions indicates that despite their general comparability,significant differences do exist in magnitude,duration,and frequency.The supercontinent Rodinia began to rift before the Snowball Earth time.By contrast,the supercontinent Pangea entered the dispersal stage after the greatest glaciation from the Late Carboniferous to Cisuralian.Quantitative data and qualitative analyses of different fossil groups show a more profound mass extinction during the N-C transition than at the end-Permian in terms of ecosystem disruption.This is indicated by the disappearance of the whole Ediacaran biota at the N-C boundary.The subsequent appearances of many new complex animals at phylum level in the early Cambrian mark the establishment of a brand new ecosystem.However,the end-Permian mass extinction is manifested mainly by the extinction of many different taxa at class and order levels.Although it caused the extinction of 95% of marine species and 75% of terrestrial species as well as complete cessation of coal and reef deposits after the mass extinction,this high-level biological re-organization still occurred within an established ecosystem,however drastic it may seem.Survived or Lazarus taxa re-occupied the existing ecospace in a relatively short duration after the end-Permian mass extinction.C-isotope excursions display large perturbations during both transitions,yet also in different magnitudes and frequencies,which suggest different atmospheric and oceanic conditions.The recurrent geological and geochemical events as well as the coupled major biological turnovers during the two transitions provide new clues to understanding the interplays among the earth-life system.Thus,it is essential to carry out multidisciplinary studies from the deep internal system to the surface of the Earth as a whole in order to unravel the interactions of different spheres of the earth.
基金supported by the Aeronautical Science Foundation of China(No.2014ZC09002)
文摘An environment control and life support system(ECLSS) is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system. An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters. However, its computational efficiency is too low to satisfy the real-time data interaction, especially for the complex ECLSS system running on a PC cluster. The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency. This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method. A temperature and humidity control subsystem(THCS) is firstly established, and its numerical stability is analyzed by using the eigenvalue estimation theory. Furthermore, an adaptive operator is proposed to avoid the potential instability problem. The stability and accuracy of the proposed method are investigated carefully. Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster.