探讨不同更新方式下森林土壤病毒群落特征及其在生物地球化学循环中作用,以福建上杭白砂国有林场的杉木人工林、天然更新次生林和原生林土壤为研究对象,结合宏病毒组学和生物信息学方法进行病毒群落结构与功能分析。结果表明:森林更新...探讨不同更新方式下森林土壤病毒群落特征及其在生物地球化学循环中作用,以福建上杭白砂国有林场的杉木人工林、天然更新次生林和原生林土壤为研究对象,结合宏病毒组学和生物信息学方法进行病毒群落结构与功能分析。结果表明:森林更新方式对土壤病毒群落结构产生了明显的影响。原生林和天然更新次生林主要病毒类群为长尾噬菌体科(Siphoviridae)(62.60%、31.49%),而杉木人工林主要土壤病毒类群为微小噬菌体科(Microviridae)(27.89%)。在3种土壤中均发现了核质巨大DNA病毒(nucleo-cytoplasmic large DNA viruses,NCLDV),其在天然更新次生林中占比最高(20.83%);杉木人工林和天然更新次生林中最主要的病毒宿主属于变形菌门(Proteobacteria),而原生林则为放线菌门(Actinobacteria)。但3种森林类型土壤病毒宿主均包括戈登氏菌(Gordonia)、红球菌(Rhodococcus)、分枝杆菌(Mycolicibacterium)等感染人和动物的致病菌;病毒功能组中均检测到丰富的辅助碳水化合物活性酶(CAZyme)基因,其中杉木人工林土壤病毒中编码CAZymes的基因丰度(4个)显著低于原生林(210个)和天然更新次生林(69个)。研究结果揭示了森林更新方式对土壤病毒结构、宿主和碳循环功能的潜在影响。展开更多
X-ray diffraction and selective chemical dissolution methods were used to investigate the composition of Mn oxide minerals in Fe-Mn nodules of several main types of soils in China. The changes of relative intensity of...X-ray diffraction and selective chemical dissolution methods were used to investigate the composition of Mn oxide minerals in Fe-Mn nodules of several main types of soils in China. The changes of relative intensity of X-ray diffraction patterns were studied both before and after chemically selective dissolution. It was found that lithiophorite was a common Mn oxide in all examined Fe-Mn nodules. Todorokite, however, was a predominant Mn oxide in Fe-Mn nodules in caf-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules of arp-udic Luvisols in Wuhan and Zaoyang, Hubei Province, contained birnessite and vernadite. Hollandite was found in Fe-Mn nodules of alt-udic Ferrisols of Yizhang, Hunan Province; arp-udic Luvisols of Zaoyang, Hubei Province; and cal-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules in alt-udic Ferrisols of Guiyang, Hunan Province, had a few coronadites. Mineralogy of Mn oxide minerals in soil Fe-Mn nodules was related to soil environment, soil types and quantities of relevant cations.展开更多
Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thre...Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.展开更多
The changes of clay mineral association after high-gradient magnetic separation (HGMS) treatment, and the effects of chemical and physical technologies on concentrating Fe oxides for main soils in central and southern...The changes of clay mineral association after high-gradient magnetic separation (HGMS) treatment, and the effects of chemical and physical technologies on concentrating Fe oxides for main soils in central and southern China were investigated by means of X-ray diffraction (XRD) and chemical analysis methods. Results indicated that the concentrating times of Fe oxides by HGMS treatment were the largest for 0.2-2 μmsize fractions in the examined soils. For the soils in which 2: 1 phyllosilicates were dominant, concentrating times of iron oxides by HGMS treatment were larger than by 5 mol L-1 NaOH treatment. Phyllosili-cates were decreased after HGMS treatment; however, the decrease was less than that of kaorolinite. The goet bite / (goethite + hematie) values in Fe oxides of the soils kept virtually constant after HGMSt reatment.展开更多
文摘探讨不同更新方式下森林土壤病毒群落特征及其在生物地球化学循环中作用,以福建上杭白砂国有林场的杉木人工林、天然更新次生林和原生林土壤为研究对象,结合宏病毒组学和生物信息学方法进行病毒群落结构与功能分析。结果表明:森林更新方式对土壤病毒群落结构产生了明显的影响。原生林和天然更新次生林主要病毒类群为长尾噬菌体科(Siphoviridae)(62.60%、31.49%),而杉木人工林主要土壤病毒类群为微小噬菌体科(Microviridae)(27.89%)。在3种土壤中均发现了核质巨大DNA病毒(nucleo-cytoplasmic large DNA viruses,NCLDV),其在天然更新次生林中占比最高(20.83%);杉木人工林和天然更新次生林中最主要的病毒宿主属于变形菌门(Proteobacteria),而原生林则为放线菌门(Actinobacteria)。但3种森林类型土壤病毒宿主均包括戈登氏菌(Gordonia)、红球菌(Rhodococcus)、分枝杆菌(Mycolicibacterium)等感染人和动物的致病菌;病毒功能组中均检测到丰富的辅助碳水化合物活性酶(CAZyme)基因,其中杉木人工林土壤病毒中编码CAZymes的基因丰度(4个)显著低于原生林(210个)和天然更新次生林(69个)。研究结果揭示了森林更新方式对土壤病毒结构、宿主和碳循环功能的潜在影响。
基金Project(No.49771049)supported by the National Natural Science Foundation of China
文摘X-ray diffraction and selective chemical dissolution methods were used to investigate the composition of Mn oxide minerals in Fe-Mn nodules of several main types of soils in China. The changes of relative intensity of X-ray diffraction patterns were studied both before and after chemically selective dissolution. It was found that lithiophorite was a common Mn oxide in all examined Fe-Mn nodules. Todorokite, however, was a predominant Mn oxide in Fe-Mn nodules in caf-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules of arp-udic Luvisols in Wuhan and Zaoyang, Hubei Province, contained birnessite and vernadite. Hollandite was found in Fe-Mn nodules of alt-udic Ferrisols of Yizhang, Hunan Province; arp-udic Luvisols of Zaoyang, Hubei Province; and cal-aquic Vertisols of Linyi, Shandong Province. The Fe-Mn nodules in alt-udic Ferrisols of Guiyang, Hunan Province, had a few coronadites. Mineralogy of Mn oxide minerals in soil Fe-Mn nodules was related to soil environment, soil types and quantities of relevant cations.
基金the National Natural Science Foundation of China (Nos. 40471070 and 40403009) the Key Project of the Ministry of Education of China (No. 105122) for financial supports to this research.
文摘Oxidation of As^Ⅲ by three types of manganese oxide minerals affected by goethite was investigated by chemical analysis, equilibrium redox, X-ray diffraction (XRD) and transmission electron microscopy (TEM). Three synthesized Mn oxide minerals of different types, birnessite, todorokite, and hausmannite, could actively oxidize As^Ⅲ to Asv, and greatly varied in their oxidation ability. Layer structured birnessite exhibited the highest capacity of As^Ⅲ oxidation, followed by the tunnel structured todorokite. Lower oxide hansmannite possessed much low capacity of As^Ⅲ oxidation, and released more Mn^2+ than birnessite and todorokite during the oxidation. The maximum amount of Asv produced during the oxidation of As^Ⅲ by Mn oxide minerals was in the order: birnessite (480.4 mmol/kg) 〉 todorokite (279.6 mmol/kg) 〉 hansmannite (117.9 mmol/kg). The oxidation capacity of the Mn oxide minerals was found to be relative to the composition, crystallinity, and surface properties. In the presence of goethite oxidation of As^Ⅲ by Mn oxide minerals increased, with maximum amounts of Asv being 651.0 mmol/kg for birnessite, 332.3 mmol/kg for todorokite and 159.4 mmol/kg for hansmannite. Goethite promoted As^Ⅲ oxidation on the surface of Mn oxide minerals through adsorption of the Asv produced, incurring the decrease of Asv concentration in solutions. Thus, the combined effects of the oxidation (by Mn oxide minerals)-adsorption (by goethite) lead to rapid oxidation and immobilization of As in soils and sediments and alleviation of the As^Ⅲ toxicity in the environments.
文摘The changes of clay mineral association after high-gradient magnetic separation (HGMS) treatment, and the effects of chemical and physical technologies on concentrating Fe oxides for main soils in central and southern China were investigated by means of X-ray diffraction (XRD) and chemical analysis methods. Results indicated that the concentrating times of Fe oxides by HGMS treatment were the largest for 0.2-2 μmsize fractions in the examined soils. For the soils in which 2: 1 phyllosilicates were dominant, concentrating times of iron oxides by HGMS treatment were larger than by 5 mol L-1 NaOH treatment. Phyllosili-cates were decreased after HGMS treatment; however, the decrease was less than that of kaorolinite. The goet bite / (goethite + hematie) values in Fe oxides of the soils kept virtually constant after HGMSt reatment.