We obtained two lines of Chinese head cabbage(Brassica rapa L. ssp. pekinensis)selfed progenies containing both an anti-sense gene of BcpLH and a gene for resistance to kanamycin by micro-injecting buds of their prima...We obtained two lines of Chinese head cabbage(Brassica rapa L. ssp. pekinensis)selfed progenies containing both an anti-sense gene of BcpLH and a gene for resistance to kanamycin by micro-injecting buds of their primary transformants(T0)with Agrobacterium tumefaciens strain LBA4404. 31 positive plants resistant to kanamycien were recovered. Southern blot analysis confirmed the presence of T-DNA in two transgenic plants. One(DHZ-13-1)exhibits the characteristics of out-toward rosette and cauline leaves, and nested flower model in which secondary complete flower developed from the base of the primary ovary and the third flower from the ovary in the secondary flower, and so on, while another(DHZ-6-1)has no phenotype change. ABA and IAA affected the root growth of progeny of DHZ-13-1, but 6-BA was insensitive to hypocotyl growth during its seedling development.展开更多
Three main parameters were selected to study their importance in transformation by budmicroinjection in non-head Chinese cabbage [Brassica campestris ssp. chinensis (L.) Makinovar. communis Tsen et Lee]. The results s...Three main parameters were selected to study their importance in transformation by budmicroinjection in non-head Chinese cabbage [Brassica campestris ssp. chinensis (L.) Makinovar. communis Tsen et Lee]. The results showed that the developmental stage of floral bud, theconcentrations of sucrose and surfactant Silwet L-77 were critical for the successfultransformation by this new method. The suitable bud size is 2-3 mm in length, the favorableconcentration of sucrose and surfactant Silwet L-77 are 8 and 0.02% respectively. When thesucrose concentration was greater than 10% or that of Silwet L-77 was above 0.1%, the treatedbuds became yellow and finally blighted. 4/6 T1 seedlings resistant to kanamycin were positiveby PCR analysis, and T2 progeny of all these positive T1 plants have one or more hybridizingbands by Southern blot. Under 5% sucrose, 0.02% Silwet L-77 and grade 2 bud (2-3 mm in itslength) parameters, the most favorable transformation efficiency is about 0.56%, and meanefficiency reaches 0.16% in all experiments indicating that bud microinjection is potentialtransformation way in non-head Chinese cabbage.展开更多
文摘We obtained two lines of Chinese head cabbage(Brassica rapa L. ssp. pekinensis)selfed progenies containing both an anti-sense gene of BcpLH and a gene for resistance to kanamycin by micro-injecting buds of their primary transformants(T0)with Agrobacterium tumefaciens strain LBA4404. 31 positive plants resistant to kanamycien were recovered. Southern blot analysis confirmed the presence of T-DNA in two transgenic plants. One(DHZ-13-1)exhibits the characteristics of out-toward rosette and cauline leaves, and nested flower model in which secondary complete flower developed from the base of the primary ovary and the third flower from the ovary in the secondary flower, and so on, while another(DHZ-6-1)has no phenotype change. ABA and IAA affected the root growth of progeny of DHZ-13-1, but 6-BA was insensitive to hypocotyl growth during its seedling development.
文摘Three main parameters were selected to study their importance in transformation by budmicroinjection in non-head Chinese cabbage [Brassica campestris ssp. chinensis (L.) Makinovar. communis Tsen et Lee]. The results showed that the developmental stage of floral bud, theconcentrations of sucrose and surfactant Silwet L-77 were critical for the successfultransformation by this new method. The suitable bud size is 2-3 mm in length, the favorableconcentration of sucrose and surfactant Silwet L-77 are 8 and 0.02% respectively. When thesucrose concentration was greater than 10% or that of Silwet L-77 was above 0.1%, the treatedbuds became yellow and finally blighted. 4/6 T1 seedlings resistant to kanamycin were positiveby PCR analysis, and T2 progeny of all these positive T1 plants have one or more hybridizingbands by Southern blot. Under 5% sucrose, 0.02% Silwet L-77 and grade 2 bud (2-3 mm in itslength) parameters, the most favorable transformation efficiency is about 0.56%, and meanefficiency reaches 0.16% in all experiments indicating that bud microinjection is potentialtransformation way in non-head Chinese cabbage.