Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this st...Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this study,320 counties in the black soil region of Northeast China(BSRNC)represent the research units used to construct the CQE system measuring the soil properties(SP),cultivated land productivity(CLP),ecological environment(EE)and social economy(SE).The total of 19 factors were selected to calculate the integrated fertility index(IFI)and divided into grades.Simultaneously,we used the coupling coordination degree model to comprehensively analyze the spatial pattern of the cultivated land quality(CLQ)in the BSRNC,and use the structural equation model(SEM)to analyze the driving mechanism.The results show the following:1)The CLQ of 262 counties in the BSRNC is in a state of coupling and coordination,and the coupling and coordination degree presents a spatial distribution pattern of‘high in the southwest and northeast,low in the northwest and southeast’.The coordinated development degree of 271 counties is between 0.4 and 0.6,which is in a transitional state between coordination and disorder.2)The CLQ in the BSRNC is generally good,with an average grade of 3.High-quality cultivated land accounts for 58.45%of all counties,middle-and upper-quality cultivated land accounts for 27.05%,and poor-quality cultivated land accounts for 14.49%.3)The SEM analysis shows that the SP,CLP,EE,and SE all influence the CLQ.Among them,the SP has the largest driving force on the CLQ,while the SE has the smallest driving force on it.The results confirm that the main factors affecting the evaluation results are crop productivity level,normalized difference vegetation index,ratio vegetation index,difference vegetation index,and organic carbon content.When implementing protection measures in counties with a low CLQ,considering a balanced coordination of multiple systems and reasonably controlling the quality degradation are important.This study provides the current situation and driving factors of the CLQ in the BSRNC and will play an important role in black soil governance and utilization.展开更多
Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic ...Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.展开更多
As an important indicator of the structural and functional stability of wetland landscapes,hydrological connectivity plays an important role in maintaining the stability of wetland ecosystems.Large-scale human activit...As an important indicator of the structural and functional stability of wetland landscapes,hydrological connectivity plays an important role in maintaining the stability of wetland ecosystems.Large-scale human activities have led to significant changes in the hydrological connectivity pattern of wetlands in Naoli River Basin since 1950 s.Combined with the availability of wetland habitat and the spreading capacity of aquatic birds,hydrological connectivity indices of marsh wetlands were calculated in the studied area,and the temporal and spatial changes were analyzed from 1950 s to 2015.The results indicate that:(1)the hydrological connectivity index of the marsh wetlands shows a growth trend with increasing distance threshold.All patches of marsh wetlands linked together when the distance threshold reached 35--40 km;(2)the optimal distance of hydrological connectivity is about 10 km for marsh wetlands of whole Naoli River Basin;(3)the total hydrological connectivity of marsh wetlands decreased in the Naoli River Basin from 1950 s to 2015.Although the hydrological connectivity index increased after 2005,the fragmentation of the landscape has not been improved.The analysis of the wetland hydrological connectivity can provide a scientific basis for the ecological restoration and protection of the wetland in the Naoli River Basin.展开更多
There are many elaborate masterpieces exist in natural world. Learning from nature, people developed serial intelligent biomimetic devices. Biomimetic smart nanochannels received widespread attention for mimicking bio...There are many elaborate masterpieces exist in natural world. Learning from nature, people developed serial intelligent biomimetic devices. Biomimetic smart nanochannels received widespread attention for mimicking biological processes in bodies. Excellent stability, tailorable surface characteristics and nano-size effects rend polymer single nanochannel an ideal candidate for constructing sensitive and reproducible biosensors. Nanochannels are responsive for special analytes while appropriate recognition elements are modified in channels wall. In this review, we summarized recent works in contructing biosensors that are using polymer single nanochannels for detecting various analytes.展开更多
基金Under the auspices of National Key R&D Program of China(No.2021YFD1500104-4)National Natural Science Foundation of China(No.42171407,42077242)+1 种基金Natural Science Foundation of Jilin Province(No.20210101098JC)Special Investigation on Basic Science and Technology Resources(No.2021FY100406)。
文摘Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this study,320 counties in the black soil region of Northeast China(BSRNC)represent the research units used to construct the CQE system measuring the soil properties(SP),cultivated land productivity(CLP),ecological environment(EE)and social economy(SE).The total of 19 factors were selected to calculate the integrated fertility index(IFI)and divided into grades.Simultaneously,we used the coupling coordination degree model to comprehensively analyze the spatial pattern of the cultivated land quality(CLQ)in the BSRNC,and use the structural equation model(SEM)to analyze the driving mechanism.The results show the following:1)The CLQ of 262 counties in the BSRNC is in a state of coupling and coordination,and the coupling and coordination degree presents a spatial distribution pattern of‘high in the southwest and northeast,low in the northwest and southeast’.The coordinated development degree of 271 counties is between 0.4 and 0.6,which is in a transitional state between coordination and disorder.2)The CLQ in the BSRNC is generally good,with an average grade of 3.High-quality cultivated land accounts for 58.45%of all counties,middle-and upper-quality cultivated land accounts for 27.05%,and poor-quality cultivated land accounts for 14.49%.3)The SEM analysis shows that the SP,CLP,EE,and SE all influence the CLQ.Among them,the SP has the largest driving force on the CLQ,while the SE has the smallest driving force on it.The results confirm that the main factors affecting the evaluation results are crop productivity level,normalized difference vegetation index,ratio vegetation index,difference vegetation index,and organic carbon content.When implementing protection measures in counties with a low CLQ,considering a balanced coordination of multiple systems and reasonably controlling the quality degradation are important.This study provides the current situation and driving factors of the CLQ in the BSRNC and will play an important role in black soil governance and utilization.
基金Supported by projects of the National Key Research and Developm ent China(No.2016YFC0501201-04)Strategic Planning of Ins titute of Northeast Geography and Agroecology,CAS(No.Y6H2091001).
文摘Since the 1970s,the soda saline-alkali soil region,which is located in the semiarid-arid region of the central Northeast China,has experienced drastic climate variability.Meanwhile,human activities and socio-economic development have led to an increase in water consumption.These factors have brought out considerable land use change and a lot of soil salinize-alkalization.The land use types were obtained from remote sensing images interpretation based on Landsat MSS in 1970s,TM,ETM in 1990s and 2010s.The characteristics of land use conversion and its response to climate change and influence of human activities were explored in the study area during 1970-2010.The results include:(1)The land use types had changed significantly,especially farmland and grassland,with annual growth rates of 0.31% and 0.35%,respectively.In terms of the saline-alkali land,the area increased greatly during 1970-1990,and its increase was mainly from grassland.There was a decrease from 1990 to 2010,and the loss of saline-alkali was replaced by farmland and grassland.(2)Climate change in the study area is obvious,showing a trend of decreasing precipitation and increasing temperature.The change of saline-alkali land area is closely related to the precipitation,with R2=0.78,passed a passing the 0.01 significance test.(3)The correlation of land use degree index and human activity index with saline-alkali land was not obvious,and the changes in these indices only reflected the land use patterns.Under sufficient rainfall,the saline-alkali land was developed into farmland by humans,which caused the decrease of the saline-alkali land.Therefore,climate change is the main driving force of land salinization in the study area.
基金Supported by projects of National Natural Science Foundation of China (No. 41771103)National Key R&D Program of China (No. 2016YFC0500204)。
文摘As an important indicator of the structural and functional stability of wetland landscapes,hydrological connectivity plays an important role in maintaining the stability of wetland ecosystems.Large-scale human activities have led to significant changes in the hydrological connectivity pattern of wetlands in Naoli River Basin since 1950 s.Combined with the availability of wetland habitat and the spreading capacity of aquatic birds,hydrological connectivity indices of marsh wetlands were calculated in the studied area,and the temporal and spatial changes were analyzed from 1950 s to 2015.The results indicate that:(1)the hydrological connectivity index of the marsh wetlands shows a growth trend with increasing distance threshold.All patches of marsh wetlands linked together when the distance threshold reached 35--40 km;(2)the optimal distance of hydrological connectivity is about 10 km for marsh wetlands of whole Naoli River Basin;(3)the total hydrological connectivity of marsh wetlands decreased in the Naoli River Basin from 1950 s to 2015.Although the hydrological connectivity index increased after 2005,the fragmentation of the landscape has not been improved.The analysis of the wetland hydrological connectivity can provide a scientific basis for the ecological restoration and protection of the wetland in the Naoli River Basin.
基金supported by the National Basic Research Program of China (2011CB935700)National Natural Science Foundation of China(21201170, 11290163, 21121001, 91127025, 21171171)+1 种基金Key Research Program of the Chinese Academy of Sciences (KJZD-EW-M01)Beijing National Laboratory for Molecular Sciences (CMS-PY-201243)
文摘There are many elaborate masterpieces exist in natural world. Learning from nature, people developed serial intelligent biomimetic devices. Biomimetic smart nanochannels received widespread attention for mimicking biological processes in bodies. Excellent stability, tailorable surface characteristics and nano-size effects rend polymer single nanochannel an ideal candidate for constructing sensitive and reproducible biosensors. Nanochannels are responsive for special analytes while appropriate recognition elements are modified in channels wall. In this review, we summarized recent works in contructing biosensors that are using polymer single nanochannels for detecting various analytes.