The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin...The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.展开更多
现有细粒度分析方法未能充分利用细粒度情绪信息来增强上下文与评价目标间的语义关联性,且对多词构成的评价目标仅平均化处理,损失了词间内容与关系信息,导致分类不精准。针对上述问题,本文提出了一种基于细粒度信息交互注意力(interact...现有细粒度分析方法未能充分利用细粒度情绪信息来增强上下文与评价目标间的语义关联性,且对多词构成的评价目标仅平均化处理,损失了词间内容与关系信息,导致分类不精准。针对上述问题,本文提出了一种基于细粒度信息交互注意力(interactive attention with fine-grained information,FGIA)的情绪分类方法,通过采用更加细粒度的注意力机制来实现评价目标与上下文之间的充分交互,同时得到目标对上下文以及上下文对目标的交互注意力表示,进而辅助完成情绪分类。在本文构建的COVID-19网络舆情中文数据集上进行了实验验证,结果表明,FGIA能够有效地提升网络舆情数据情绪分类的准确性,相比于主流的分类方法,在各项评价指标上均取得了较高的提升。展开更多
基金the National Natural Science Foundation of China (60303029)
文摘The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.
文摘现有细粒度分析方法未能充分利用细粒度情绪信息来增强上下文与评价目标间的语义关联性,且对多词构成的评价目标仅平均化处理,损失了词间内容与关系信息,导致分类不精准。针对上述问题,本文提出了一种基于细粒度信息交互注意力(interactive attention with fine-grained information,FGIA)的情绪分类方法,通过采用更加细粒度的注意力机制来实现评价目标与上下文之间的充分交互,同时得到目标对上下文以及上下文对目标的交互注意力表示,进而辅助完成情绪分类。在本文构建的COVID-19网络舆情中文数据集上进行了实验验证,结果表明,FGIA能够有效地提升网络舆情数据情绪分类的准确性,相比于主流的分类方法,在各项评价指标上均取得了较高的提升。