Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic hi...Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic histone acetylation.Therefore,our present study aimed to investigate whether a histone deacetylase inhibitor(sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol(DON) exposure by modulating cholesterol metabolism.Herein,we randomly divided 28 pigs into four groups,which were fed an uncontaminated basal diet,contaminated diet(4 mg DON/kg),uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet(4 mg DON/kg) supplemented with 0.2% NaBu for 28 d.Results:We found that the serum alanine transaminase(ALT),aspartate transaminase(AST),and alkaline phosphatase(ALP) were all increased in pigs exposed to DON,indicative of significant liver injury.Furthermore,the cholesterol content in the serum of DON-exposed pigs was significantly reduced,compared to the healthy Vehicle group.Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure.In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated.Importantly,NaBu effectively restored parameters associated with liver injury,along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway.Mechanistically,we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment.We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu,as determined by ChIP-qPCR analysis.Notably,nuclear receptor RORγ,a novel regulator of cholesterol biosynthesis,was found in the hyperacetylated regions.Again,a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu.Consistent with RORγ expression,NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR,SQLE,and DHCR24.Furthermore,we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes.Conclusions:Collectively,our results demonstrate the utility of the natural product Na Bu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification.展开更多
Lidar based on the optical phased array(OPA)and frequency-modulated continuous wave(FMCW)technology stands out in automotive applications due to its all-solid-state design,high reliability,and remarkable resistance to...Lidar based on the optical phased array(OPA)and frequency-modulated continuous wave(FMCW)technology stands out in automotive applications due to its all-solid-state design,high reliability,and remarkable resistance to interference.However,while FMCW coherent detection enhances the interference resistance capabilities,it concurrently results in a significant increase in depth computation,becoming a primary constraint for improving point cloud density in such perception systems.To address this challenge,this study introduces a lidar solution leveraging the flexible scanning characteristics of OPA.The proposed system categorizes target types within the scene based on RGB images.Subsequently,it performs scans with varying angular resolutions depending on the importance of the targets.Experimental results demonstrate that,compared to traditional scanning methods,the target-adaptive method based on semantic segmentation reduces the number of points to about one-quarter while maintaining the resolution of the primary target area.Conversely,with a similar number of points,the proposed approach increases the point cloud density of the primary target area by about four times.展开更多
Light detection and ranging(LiDAR)serves as one of the key components in the fields of autonomous driving,surveying mapping,and environment detection.Conventionally,dense points clouds are pursued by LiDAR systems to ...Light detection and ranging(LiDAR)serves as one of the key components in the fields of autonomous driving,surveying mapping,and environment detection.Conventionally,dense points clouds are pursued by LiDAR systems to provide high-definition 3D images.However,the LiDAR is typically used to produce abundant yet redundant data for scanning the homogeneous background of scenes,resulting in power waste and excessive processing time.Hence,it is highly desirable for a LiDAR system to“gaze”at the target of interest by dense scanning and rough sparse scans on the uninteresting areas.Here,we propose a LiDAR structure based on an optical phased array(OPA)with reconfigurable apertures to achieve such a gaze scanning function.By virtue of the cascaded optical switch integrated on the OPA chip,a 64-,128-,192-,or 256-channel antenna can be selected discretionarily to construct an aperture with variable size.The corresponding divergence angles for the far-field beam are 0.32°,0.15°,0.10°,and 0.08°,respectively.The reconfigurable-aperture OPA enables the LiDAR system to perform rough scans via the large beam spots prior to fine scans of the target by using the tiny beam spots.In this way,the OPA-based LiDAR can perform the“gaze”function and achieve full-range scanning efficiently.The scanning time and power consumption can be reduced by 1/4 while precise details of the target are maintained.Finally,we embed the OPA into a frequency-modulated continuous-wave(FMCW)system to demonstrate the“gaze”function in beam scanning.Experiment results show that the number of precise scanning points can be reduced by 2/3 yet can obtain the reasonable outline of the target.The reconfigurable-aperture OPA(RA-OPA)can be a promising candidate for the applications of rapid recognition,like car navigation and robot vision.展开更多
基金supported by Key Research and Development Project(Modern Agriculture)of Jiangsu Province(BE2019341)Jiangsu Agricultural Science and Technology Innovation Fund(CX[20]2003)the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Background:Cholesterol is an essential component of lipid rafts in cell plasma membrane,which exerts a hepatoprotective role against mycotoxin exposure in pigs,and cholesterol metabolism is vulnerable to epigenetic histone acetylation.Therefore,our present study aimed to investigate whether a histone deacetylase inhibitor(sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol(DON) exposure by modulating cholesterol metabolism.Herein,we randomly divided 28 pigs into four groups,which were fed an uncontaminated basal diet,contaminated diet(4 mg DON/kg),uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet(4 mg DON/kg) supplemented with 0.2% NaBu for 28 d.Results:We found that the serum alanine transaminase(ALT),aspartate transaminase(AST),and alkaline phosphatase(ALP) were all increased in pigs exposed to DON,indicative of significant liver injury.Furthermore,the cholesterol content in the serum of DON-exposed pigs was significantly reduced,compared to the healthy Vehicle group.Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure.In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated.Importantly,NaBu effectively restored parameters associated with liver injury,along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway.Mechanistically,we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment.We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu,as determined by ChIP-qPCR analysis.Notably,nuclear receptor RORγ,a novel regulator of cholesterol biosynthesis,was found in the hyperacetylated regions.Again,a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu.Consistent with RORγ expression,NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR,SQLE,and DHCR24.Furthermore,we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes.Conclusions:Collectively,our results demonstrate the utility of the natural product Na Bu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification.
基金National Key Research and Development Program of China(2022YFB2804502,2022YFB2804504)National Natural Science Foundation of China(61934003,62090054)+2 种基金Major Scientific and Technological Program of Jilin Province(20210301014GX)Jilin Provincial Development and Reform Commission Project(2020C056)Program for Jilin University Science and Technology Innovative Research Team(JLUSTIRT,2021TD-39)。
文摘Lidar based on the optical phased array(OPA)and frequency-modulated continuous wave(FMCW)technology stands out in automotive applications due to its all-solid-state design,high reliability,and remarkable resistance to interference.However,while FMCW coherent detection enhances the interference resistance capabilities,it concurrently results in a significant increase in depth computation,becoming a primary constraint for improving point cloud density in such perception systems.To address this challenge,this study introduces a lidar solution leveraging the flexible scanning characteristics of OPA.The proposed system categorizes target types within the scene based on RGB images.Subsequently,it performs scans with varying angular resolutions depending on the importance of the targets.Experimental results demonstrate that,compared to traditional scanning methods,the target-adaptive method based on semantic segmentation reduces the number of points to about one-quarter while maintaining the resolution of the primary target area.Conversely,with a similar number of points,the proposed approach increases the point cloud density of the primary target area by about four times.
基金Program for Jilin University Science and Technology Innovative Research Team(2021TD-39)Jilin Provincial Development and Reform Commission Project(2020C056)+2 种基金Major Scientific and Technological Program of Jilin Province(20210301014GX)National Natural Science Foundation of China(62105173,62105174,61934003,62090054)National Key Research and Development Program of China(2022YFB2804504)。
文摘Light detection and ranging(LiDAR)serves as one of the key components in the fields of autonomous driving,surveying mapping,and environment detection.Conventionally,dense points clouds are pursued by LiDAR systems to provide high-definition 3D images.However,the LiDAR is typically used to produce abundant yet redundant data for scanning the homogeneous background of scenes,resulting in power waste and excessive processing time.Hence,it is highly desirable for a LiDAR system to“gaze”at the target of interest by dense scanning and rough sparse scans on the uninteresting areas.Here,we propose a LiDAR structure based on an optical phased array(OPA)with reconfigurable apertures to achieve such a gaze scanning function.By virtue of the cascaded optical switch integrated on the OPA chip,a 64-,128-,192-,or 256-channel antenna can be selected discretionarily to construct an aperture with variable size.The corresponding divergence angles for the far-field beam are 0.32°,0.15°,0.10°,and 0.08°,respectively.The reconfigurable-aperture OPA enables the LiDAR system to perform rough scans via the large beam spots prior to fine scans of the target by using the tiny beam spots.In this way,the OPA-based LiDAR can perform the“gaze”function and achieve full-range scanning efficiently.The scanning time and power consumption can be reduced by 1/4 while precise details of the target are maintained.Finally,we embed the OPA into a frequency-modulated continuous-wave(FMCW)system to demonstrate the“gaze”function in beam scanning.Experiment results show that the number of precise scanning points can be reduced by 2/3 yet can obtain the reasonable outline of the target.The reconfigurable-aperture OPA(RA-OPA)can be a promising candidate for the applications of rapid recognition,like car navigation and robot vision.