期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Bending and Rolling Shear Properties of Cross-Laminated Timber Fabricated with Canadian Hemlock 被引量:1
1
作者 Gengmu Ruan haibei xiong Jiawei Chen 《Structural Durability & Health Monitoring》 EI 2019年第2期227-246,共20页
In this paper,bending performance and rolling shear properties of crosslaminated timber(CLT)panels made from Canadian hemlock were investigated by varied approaches.Firstly,three groups of bending tests of three-layer... In this paper,bending performance and rolling shear properties of crosslaminated timber(CLT)panels made from Canadian hemlock were investigated by varied approaches.Firstly,three groups of bending tests of three-layer CLT panels with different spans were carried out.Different failure modes were obtained:bending failure,rolling shear failure,bonding line failure,local failure of the outer layer and mixed failure mode.Deflection and strain measurements were employed to calculate the global and local modulus of elastic(MOE),compared with the theoretical value.In addition,a modified compression shear testing method was introduced to evaluate the rolling shear strength and modulus,compared with the results from strain measurements in bending shear tests.According to testing results,bonding line failure and rolling shear failure were dominant failure modes in bending tests,and the theoretical value of bending property was beyond the average level of the calculating results obtained from both deflection and strain measurements.In addition,the rolling shear strength and modulus obtained from compression shear tests were relatively smaller than those from bending tests. 展开更多
关键词 BENDING PROPERTIES ROLLING shear PROPERTIES failure modes BONDING line
下载PDF
Mechanical Properties of a Eucalyptus-Based Oriented Oblique Strand Lumber for Structural Applications
2
作者 Jiawei Chen haibei xiong +1 位作者 Zhifang Wang Linqing Yang 《Journal of Renewable Materials》 SCIE 2019年第11期1147-1164,共18页
Wood and wood-based composite materials have gained increasing attention in the sustainable building industry because of their renewability and environmental friendliness.Oriented oblique strand lumber(Eucalyptus Stra... Wood and wood-based composite materials have gained increasing attention in the sustainable building industry because of their renewability and environmental friendliness.Oriented oblique strand lumber(Eucalyptus Strand Wood,ESWood),which is manufactured from fast-growing small diameter eucalyptus wood(Eucalyptus urophylla×E.grandis),is introduced in this paper.Small clear specimen tests were conducted to determine the mechanical properties of ESWood material while full-scale component tests were performed to observe the structural performance of ESWood beams.A comparison of mechanical properties of ESWood with other wood/bamboo-based materials is then reported.From the results presented herein,it appears that the strength and stiffness properties of ESWood are affected by grain directionality and glued layers.However,it still has preferable mechanical properties as a building material,which is comparable or superior to those of other engineered wood/bamboo-based products(e.g.,Sitka spruce,LVL,OSL,Glulam,and Glubam).Furthermore,results from full-scale component tests show the stable mechanical performance of beams made by ESWood.This study makes a significant contribution to a potential utilization of fast-growing eucalyptus for general use in construction,and the presented mechanical tests results can serve as a fundamental data for more applications of ESWood in practical engineering. 展开更多
关键词 Wood-based composite material mechanical properties EUCALYPTUS experimental test construction material
下载PDF
Mechanical Experimental Study on Tensile Bolted Connections of Cross-laminated Timber
3
作者 Chenxiao Su haibei xiong 《Structural Durability & Health Monitoring》 EI 2020年第1期81-94,共14页
In order to explore a kind of high-strength,earthquake-resistant,eco-nomical and suitable connection,4 groups of cross-laminated timber wall-to-floor and wall-to-wall bolted connections were tested under monotonic and... In order to explore a kind of high-strength,earthquake-resistant,eco-nomical and suitable connection,4 groups of cross-laminated timber wall-to-floor and wall-to-wall bolted connections were tested under monotonic and cyclic load-ing.The defommation characteristics and failure modes of the cross-laminated tim-ber wall-to-floor and wall-to-wall bolted connections were exploited.Load-slip curves,bearing capacity,yielding point,stiffness and ductility of each group of specimens were analyzed.The test results indicate that the loading process of cross-laminated timber bolted connections under tension can be categorized as five stages,namely the elastic stage,the slip stage,the embedding stage,the yield-ing stage and the ultimate stage.The ultimate tensile capacity of cross-laminated timber bolted wall-to-floor connections is 2.67 times that of the wall-to-wall bolted connections.Compared with cross-laminated timber self-tapping screwed connections,the ultimate tensile capacity of the cross-laminated timber wall-to-floor bolted connections is 2.70 times that of the self-tapping screwed connec-tions,and the ultimate tensile capacity of the cross-laminated timber wall-to-wall bolted connections is 3.83 times that of the self-tapping screwed connections.The crosslaminated timber bolted connections have larger yielding displacement and wider plastic range,and they are more energy dissipative and more ductile.Furthermore,the cost of the cross-laminated timber wall-to-floor bolted connec-tions is 46%that of the self-tapping screwed connections,while the cost of cross-laminated wall-to-wall bolted connections is 53%that of the self-screwed connections. 展开更多
关键词 Cross-laminated timber bolted connections mechanical properties economical and suitable
下载PDF
High-Rise Residential Reinforced Concrete Building Optimisation
4
作者 haibei xiong Miguel Angel Hidalgo Calvo 《Open Journal of Civil Engineering》 2015年第4期437-450,共14页
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ... In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure. 展开更多
关键词 STRUCTURE Optimisation HIGH-RISE RESIDENTIAL Reinforced Concrete Buildings Shear-Wall STRUCTURE Deep PILES Post GROUTING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部