The concept of the carbon cycle in the old goaf of a coal mine based on CO_(2)utilization and storage was put forward adhering to the principle of low-carbon development,utilization of space resources in old goafs,and...The concept of the carbon cycle in the old goaf of a coal mine based on CO_(2)utilization and storage was put forward adhering to the principle of low-carbon development,utilization of space resources in old goafs,and associated gas resources development.Firstly,the evolution characteristics of overburden fissures in the goaf of the case was studied using a two-dimensional physical similarity simulation test,the sealing performance of the caprocks after stabilization was analyzed,and the fissures were counted and classi-fied.Then,the process of gaseous CO_(2)injection in the connected fissure was simulated by Ansys Fluent software,and the migration law and distribution characteristics of CO_(2)under the condition of gaseous CO_(2)injection were analyzed.Finally,the estimation models of free CO_(2)storage capacity in the old goaf were constructed considering the proportion of connected fissure and the effectiveness of CO_(2)injection.The CO_(2)storage capacity in the old goaf of the case coal mine was estimated.The results showed that a caprock group of“hard-thickness low-permeability hard-thickness”was formed after the caprock-fissures system in the goaf of the case tended to be stable vertically.The connected fissure,occlude cracks,and micro-fractures in the goaf accounted for 85.5%,8.5%,and 6%of the total fissures,respectively.Gaseous CO_(2)first migrated to the bottom of the connected fissure after CO_(2)was injected into the goaf,then spread horizontally along the bottom of the connected fissure after reaching the bottom,and finally spread longitudinally after filling the bottom of the entire connected fissure.The theoretical and effective storage capacities of free CO_(2)at normal temperature and pressure in the old goaf of the case were 9757 and 7477 t,respectively.The effective storage capacity of free CO_(2)at normal temperature and pressure in the old goaf after all minefield mined was 193404 t.The research can provide some reference for the coal mining industry to help the goal of“carbon peaking and carbon neutrality”.展开更多
The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efe...The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources.展开更多
Collaborative prediction model of gas emission quantity was built by feature selection and supervised machine learning algorithm to improve the scientifc and accurate prediction of gas emission quantity in the mining ...Collaborative prediction model of gas emission quantity was built by feature selection and supervised machine learning algorithm to improve the scientifc and accurate prediction of gas emission quantity in the mining face.The collaborative prediction model was screened by precision evaluation index.Samples were pretreated by data standardization,and 20 characteristic parameter combinations for gas emission quantity prediction were determined through 4 kinds of feature selection methods.A total of 160 collaborative prediction models of gas emission quantity were constructed by using 8 kinds of classical supervised machine learning algorithm and 20 characteristic parameter combinations.Determination coefcient,normalized mean square error,mean absolute percentage error range,Hill coefcient,mean absolute error,and the mean relative error indicators were used to verify and evaluate the performance of the collaborative forecasting model.As such,the high prediction accuracy of three kinds of machine learning algorithms and seven kinds of characteristic parameter combinations were screened out,and seven optimized collaborative forecasting models were fnally determined.Results show that the judgement coefcients,normalized mean square error,mean absolute percentage error,and Hill inequality coefcient of the 7 optimized collaborative prediction models are 0.969–0.999,0.001–0.050,0.004–0.057,and 0.002–0.037,respectively.The determination coefcient of the fnal prediction sequence,the normalized mean square error,the mean absolute percentage error,the Hill inequality coefcient,the absolute error,and the mean relative error are 0.998%,0.003%,0.022%,0.010%,0.080%,and 2.200%,respectively.The multi-parameter,multi-algorithm,multi-combination,and multijudgement index prediction model has high accuracy and certain universality that can provide a new idea for the accurate prediction of gas emission quantity.展开更多
基金the financial support from the National Natural Science Foundation of China(No.52074217)the Natural Science Basic Research Program of Shaanxi Province(No.2021JLM-26).
文摘The concept of the carbon cycle in the old goaf of a coal mine based on CO_(2)utilization and storage was put forward adhering to the principle of low-carbon development,utilization of space resources in old goafs,and associated gas resources development.Firstly,the evolution characteristics of overburden fissures in the goaf of the case was studied using a two-dimensional physical similarity simulation test,the sealing performance of the caprocks after stabilization was analyzed,and the fissures were counted and classi-fied.Then,the process of gaseous CO_(2)injection in the connected fissure was simulated by Ansys Fluent software,and the migration law and distribution characteristics of CO_(2)under the condition of gaseous CO_(2)injection were analyzed.Finally,the estimation models of free CO_(2)storage capacity in the old goaf were constructed considering the proportion of connected fissure and the effectiveness of CO_(2)injection.The CO_(2)storage capacity in the old goaf of the case coal mine was estimated.The results showed that a caprock group of“hard-thickness low-permeability hard-thickness”was formed after the caprock-fissures system in the goaf of the case tended to be stable vertically.The connected fissure,occlude cracks,and micro-fractures in the goaf accounted for 85.5%,8.5%,and 6%of the total fissures,respectively.Gaseous CO_(2)first migrated to the bottom of the connected fissure after CO_(2)was injected into the goaf,then spread horizontally along the bottom of the connected fissure after reaching the bottom,and finally spread longitudinally after filling the bottom of the entire connected fissure.The theoretical and effective storage capacities of free CO_(2)at normal temperature and pressure in the old goaf of the case were 9757 and 7477 t,respectively.The effective storage capacity of free CO_(2)at normal temperature and pressure in the old goaf after all minefield mined was 193404 t.The research can provide some reference for the coal mining industry to help the goal of“carbon peaking and carbon neutrality”.
基金supported by the Natural Science Foundation of China(51874236 and 52174207)Shaanxi Provincial Department of Science and Technology(2020JC-48 and 2022TD-02)China Postdoctoral Science Foundation(2021M693879).
文摘The pore structure of coal plays a key role in controlling the storage and migration of CH4/N2.The pore structure of coal is an important indicator to measure the gas extraction capability and the gas displacement efect of N2 injection.The deformation characteristic of coal during adsorption–desorption of CH4/N2 is an important factor afecting CH4 pumpability and N2 injectability.The pore structure characteristics of low-permeability coal were obtained by fuid intrusion method and photoelectric radiation technology.The multistage and connectivity of coal pores were analyzed.Subsequently,a simultaneous test experiment of CH4/N2 adsorption–desorption and coal deformation was carried out.The deformation characteristics of coal were clarifed and a coal strain model was constructed.Finally,the applicability of low-permeability coal to N2 injection for CH4 displacement technology was investigated.The results show that the micropores and transition pores of coal samples are relatively developed.The pore morphology of coal is dominated by semi-open pores.The pore structure of coal is highly complex and heterogeneous.Transition pores,mesopores and macropores of coal have good connectivity,while micropores have poor connectivity.Under constant triaxial stress,the adsorption capacity of the coal for CH4 is greater than that for N2,and the deformation capacity of the coal for CH4 adsorption is greater than that for N2 adsorption.The axial strain,circumferential strain,and volumetric strain during the entire process of CH4 and N2 adsorption/desorption in the coal can be divided into three stages.Coal adsorption–desorption deformation has the characteristics of anisotropy and gas-diference.A strain model for the adsorption–desorption of CH4/N2 from coal was established by considering the expansion stress of adsorbed gas on the coal matrix,the compression stress of free gas on the coal matrix,and the expansion stress of free gas on micropore fractures.N2 has good injectability in low-permeability coal seams and has the dual functions of improving coal seam permeability and enhancing gas fow,which can signifcantly improve the efectiveness of low-permeability coal seam gas control and promote the efcient utilization of gas resources.
基金supported by National Natural Science Foundation of China(51734007)Outstanding Youth Program of Shaanxi Province,China(2020JC-48)Key Enterprise Joint Fund of Shaanxi Province,China(2019JLP-02).
文摘Collaborative prediction model of gas emission quantity was built by feature selection and supervised machine learning algorithm to improve the scientifc and accurate prediction of gas emission quantity in the mining face.The collaborative prediction model was screened by precision evaluation index.Samples were pretreated by data standardization,and 20 characteristic parameter combinations for gas emission quantity prediction were determined through 4 kinds of feature selection methods.A total of 160 collaborative prediction models of gas emission quantity were constructed by using 8 kinds of classical supervised machine learning algorithm and 20 characteristic parameter combinations.Determination coefcient,normalized mean square error,mean absolute percentage error range,Hill coefcient,mean absolute error,and the mean relative error indicators were used to verify and evaluate the performance of the collaborative forecasting model.As such,the high prediction accuracy of three kinds of machine learning algorithms and seven kinds of characteristic parameter combinations were screened out,and seven optimized collaborative forecasting models were fnally determined.Results show that the judgement coefcients,normalized mean square error,mean absolute percentage error,and Hill inequality coefcient of the 7 optimized collaborative prediction models are 0.969–0.999,0.001–0.050,0.004–0.057,and 0.002–0.037,respectively.The determination coefcient of the fnal prediction sequence,the normalized mean square error,the mean absolute percentage error,the Hill inequality coefcient,the absolute error,and the mean relative error are 0.998%,0.003%,0.022%,0.010%,0.080%,and 2.200%,respectively.The multi-parameter,multi-algorithm,multi-combination,and multijudgement index prediction model has high accuracy and certain universality that can provide a new idea for the accurate prediction of gas emission quantity.