Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underl...Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naive chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17:135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition.展开更多
The black soil region of northeast China is one of the most important grain-producing areas in China. Increasingly severe gully erosion in this region has destroyed much farmland and reduced grain production. We analy...The black soil region of northeast China is one of the most important grain-producing areas in China. Increasingly severe gully erosion in this region has destroyed much farmland and reduced grain production. We analyzed SPOT5 imagery from 2007 and TM imagery from 2008 to describe the distributions of gullies and farmland shelterbelts in Kedong County and to assess the effect of farmland shelterbelts on gully erosion. The ima- gery revealed 2311 gullies with average density of 418.51 m km-2, indicating very serious gully erosion. With increasing slope gradient there was an inverse trend between gully density and shelterbelt density, indicating that farmland shelterbelts can prevent gully erosion. The defense effect of farmland shelterbelts against gullyerosion varied with distance: for distances 〈120 m, the defense effect was consistent and very strong; for distances of 120-240 m, a weak linear decrease was found in the defense effect; and for distances 〉240 m, the defense effect of the shelterbelts was significantly weaker. We recommend an optimal planting density of farmland shel- terbelts for the prevention of gully erosion at 1100-1300 m km-2.展开更多
Somatic cell nuclear transfer (SCNT) and parthenogenesis are alternative forms of reproduction and development, building new life cycles on differentiated somatic cell nuclei and duplicated maternal chromatin, respe...Somatic cell nuclear transfer (SCNT) and parthenogenesis are alternative forms of reproduction and development, building new life cycles on differentiated somatic cell nuclei and duplicated maternal chromatin, respectively. In the preceding paper (Sun F, et al., Cell Res 2007; 17:117-134.), we showed that an "erase-and-rebuild" strategy is used in normal development to transform the maternal gene expression profile to a zygotic one. Here, we investigate if the same strategy also applies to SCNT and parthenogenesis. The relationship between chromatin and chromatin factors (CFs) during SCNT and parthenogenesis was examined using immunochemical and GFP-fusion protein assays. Results from these studies indicated that soon after nuclear transfer, a majority of CFs dissociated from somatic nuclei and were redistributed to the cytoplasm of the egg. The erasure process in oogenesis is recaptured during the initial phase in SCNT. Most CFs entered pseudo-pronuclei shortly after their formation. In parthenogenesis, all parthenogenotes underwent normal oogenesis, and thus had removed most CFs from chromosomes before the initiation of development. The CFs were subsequently re-associated with female pronuclei in time and sequence similar to that in fertilized embryos. Based on these data, we conclude that the "erase-and-rebuild" process observed in normal development also occurs in SCNT and in parthenogenesis, albeit in altered fashions. The process is responsible for transcription reprogramming in these procedures. The "erase" process in SCNT is compressed and the efficiency is compromised, which likely contribute to the developmental defects often observed in nuclear transfer (nt) embryos. Furthermore, results from this study indicated that the cytoplasm of an egg contains most, if not all, essential components for assembling the zygotic program and can assemble them onto appropriate diploid chromatin of distinct origins.展开更多
Twenty water bodies in China were sampled,and 186 strains of different Microcystis species were isolated,from which eight morpho species were identified and 43 stains containing the mcyB gene were detected.Phylogeneti...Twenty water bodies in China were sampled,and 186 strains of different Microcystis species were isolated,from which eight morpho species were identified and 43 stains containing the mcyB gene were detected.Phylogenetic analysis based on the mcyB gene indicated that the microcystin(MC)-producing Microcystis in China could be divided into two groups(ⅠandⅡ)and showed significant differences between the two groups.The maximum sequence similarity was 69.1%.Microcystins(MCs)were measured by high-performance liquid chromatography(HPLC)analysis,and no microcystin-RR(MC-RR)was detected in some strains belonging to GroupⅡ.Compared to other regions of the world,the proportion of Chinese MC-producing was different,and the regional differences were more obvious.A whole-cell polymerase chain reactio(PCR)assay was conducted to analyze the proportion of the mcyB gene in the laboratory cultured and field cultured Microcystis.The proportion of four morphospecies(M.vividis,M.ichthyoblabe,M.novacekii,and M.aeruginosa)that contained the mcyB gene exceeded 50%in the field cultured sample s.Compared with former studies,M.aeruginosa was the mo st likely morphotype that can produce MCs in the world.This study provided new insight of Microcystis hazard assessment and field monitoring.展开更多
In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that di...In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.展开更多
文摘Oocytes display a maternal-specific gene expression profile, which is switched to a zygotic profile when a haploid set of chromatin is passed on to the fertilized egg that develops into an embryo. The mechanism underlying this transcription reprogramming is currently unknown. Here we demonstrate that by the time when transcription is shut down in germinal vesicle oocytes, a range of general transcription factors and transcriptional regulators are dissociated from the chromatin. The global dissociation of chromatin factors (CFs) disrupts physical contacts between the chromatin and CFs and leads to erasure of the maternal transcription program at the functional level. Critical transcription factors and regulators remain separated from chromatin for a prolonged period, and become re-associated with chromatin shortly after pronuclear formation. This is followed temporally by the re-establishment of nuclear functions such as DNA replication and transcription. We propose that the maternal transcription program is erased during oogenesis to generate a relatively naive chromatin and the zygotic transcription program is rebuilt de novo after fertilization. This process is termed as the "erase-and-rebuild" process, which is used to reset the transcription program, and most likely other nuclear processes as well, from a maternal one to that of the embryo. We further show in the accompanying paper (Gao T, et al., Cell Res 2007; 17:135-150.) that the same strategy is also employed to reprogram transcriptional profiles in somatic cell nuclear transfer and parthenogenesis, suggesting that this model is universally applicable to all forms of transcriptional reprogramming during early embryogenesis. Displacement of CFs from chromatin also offers an explanation for the phenomenon of transcription silence during the maternal to zygotic transition.
基金supported by the National Natural Science Foundation of China(31400612,41271305)the Key Technologies Research and Development Program of Henan Province(142102110147)
文摘The black soil region of northeast China is one of the most important grain-producing areas in China. Increasingly severe gully erosion in this region has destroyed much farmland and reduced grain production. We analyzed SPOT5 imagery from 2007 and TM imagery from 2008 to describe the distributions of gullies and farmland shelterbelts in Kedong County and to assess the effect of farmland shelterbelts on gully erosion. The ima- gery revealed 2311 gullies with average density of 418.51 m km-2, indicating very serious gully erosion. With increasing slope gradient there was an inverse trend between gully density and shelterbelt density, indicating that farmland shelterbelts can prevent gully erosion. The defense effect of farmland shelterbelts against gullyerosion varied with distance: for distances 〈120 m, the defense effect was consistent and very strong; for distances of 120-240 m, a weak linear decrease was found in the defense effect; and for distances 〉240 m, the defense effect of the shelterbelts was significantly weaker. We recommend an optimal planting density of farmland shel- terbelts for the prevention of gully erosion at 1100-1300 m km-2.
文摘Somatic cell nuclear transfer (SCNT) and parthenogenesis are alternative forms of reproduction and development, building new life cycles on differentiated somatic cell nuclei and duplicated maternal chromatin, respectively. In the preceding paper (Sun F, et al., Cell Res 2007; 17:117-134.), we showed that an "erase-and-rebuild" strategy is used in normal development to transform the maternal gene expression profile to a zygotic one. Here, we investigate if the same strategy also applies to SCNT and parthenogenesis. The relationship between chromatin and chromatin factors (CFs) during SCNT and parthenogenesis was examined using immunochemical and GFP-fusion protein assays. Results from these studies indicated that soon after nuclear transfer, a majority of CFs dissociated from somatic nuclei and were redistributed to the cytoplasm of the egg. The erasure process in oogenesis is recaptured during the initial phase in SCNT. Most CFs entered pseudo-pronuclei shortly after their formation. In parthenogenesis, all parthenogenotes underwent normal oogenesis, and thus had removed most CFs from chromosomes before the initiation of development. The CFs were subsequently re-associated with female pronuclei in time and sequence similar to that in fertilized embryos. Based on these data, we conclude that the "erase-and-rebuild" process observed in normal development also occurs in SCNT and in parthenogenesis, albeit in altered fashions. The process is responsible for transcription reprogramming in these procedures. The "erase" process in SCNT is compressed and the efficiency is compromised, which likely contribute to the developmental defects often observed in nuclear transfer (nt) embryos. Furthermore, results from this study indicated that the cytoplasm of an egg contains most, if not all, essential components for assembling the zygotic program and can assemble them onto appropriate diploid chromatin of distinct origins.
基金the Science and Technology Project of Henan Province(Nos.19A180018,192102310306)the Key Laboratory of Algal Biology,Institute of Hydrobiology,Chinese Academy of Sciences(No.2018001)。
文摘Twenty water bodies in China were sampled,and 186 strains of different Microcystis species were isolated,from which eight morpho species were identified and 43 stains containing the mcyB gene were detected.Phylogenetic analysis based on the mcyB gene indicated that the microcystin(MC)-producing Microcystis in China could be divided into two groups(ⅠandⅡ)and showed significant differences between the two groups.The maximum sequence similarity was 69.1%.Microcystins(MCs)were measured by high-performance liquid chromatography(HPLC)analysis,and no microcystin-RR(MC-RR)was detected in some strains belonging to GroupⅡ.Compared to other regions of the world,the proportion of Chinese MC-producing was different,and the regional differences were more obvious.A whole-cell polymerase chain reactio(PCR)assay was conducted to analyze the proportion of the mcyB gene in the laboratory cultured and field cultured Microcystis.The proportion of four morphospecies(M.vividis,M.ichthyoblabe,M.novacekii,and M.aeruginosa)that contained the mcyB gene exceeded 50%in the field cultured sample s.Compared with former studies,M.aeruginosa was the mo st likely morphotype that can produce MCs in the world.This study provided new insight of Microcystis hazard assessment and field monitoring.
文摘In X-ray pulsar-based navigation, strong X-ray background noise leads to a low signal-to-noise ratio(SNR) of the observed profile, which consequently makes it very difficult to obtain an accurate pulse phase that directly determines the navigation precision. This signifies the necessity of denoising of the observed profile. Considering that the ultimate goal of denoising is to enhance the pulse phase estimation, a profile denoising algorithm is proposed by fusing the biorthogonal lifting wavelet transform of the linear phase characteristic with the thresholding technique. The statistical properties of X-ray background noise after epoch folding are studied. Then a wavelet-scale dependent threshold is introduced to overcome correlations between wavelet coefficients. Moreover, a modified hyperbola shrinking function is presented to remove the impulsive oscillations of the observed profile. The results of numerical simulations and real data experiments indicate that the proposed method can effectively improve SNR of the observed profile and pulse phase estimation accuracy, especially in short observation durations. And it also outperforms the Donoho thresholding strategy normally used in combination with the orthogonal discrete wavelet transform.