This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations...This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is con-sidered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried numerically. The derived expressions are computed numerically for copper and the results are presented in graphical form.展开更多
In this work, a mathematical model of an elastic material with cylindrical cavity will be constructed. The governing equations will be taken into the context of the fractional order generalized thermoelasticity theory...In this work, a mathematical model of an elastic material with cylindrical cavity will be constructed. The governing equations will be taken into the context of the fractional order generalized thermoelasticity theory (Youssef 2010). Laplace transform and direct approach will be used to obtain the solution when the boundary of the cavity is exposed to harmonically heat with constant angular frequency of thermal vibration. The inverse of Laplace transforms will be computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to present the effect of the fractional order parameter and the angular frequency of thermal vibration on all the studied felids.展开更多
The non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, became the most significant effects in the nano-scale beam. In the present study, a generalized solution for the g...The non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, became the most significant effects in the nano-scale beam. In the present study, a generalized solution for the generalized thermoelastic vibration of a bounded nano-beam resonator induced by ramp type of heating is developed and the solutions take into account the above two effects. The Laplace transforms and direct method are used to determine the lateral vibration, the temperature, the displacement, the stress and the energy of the beam. The effects of the relaxation time and the ramping time parameters have been studied with some comparisons.展开更多
In this paper, we will study the most important effects in the nano-scale resonator: the coupling effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for the generalized th...In this paper, we will study the most important effects in the nano-scale resonator: the coupling effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for the generalized thermoelastic vibration of nano-resonator induced by thermal loading has been developed. The Young’s modulus is taken as a linear function of the reference temperature. The effects of the thermal loading and the reference temperature in all the studied fields have been studied and represented in graphs with some comparisons. The Young’s modulus makes significant effects on all the studied fields where the values of the temperature, the vibration of the deflection, stress, displacement, strain, stress-strain energy increase when the Young’s modulus has taken to be variable.展开更多
文摘This work is devoted to a study of the induced temperature and stress fields in an elastic half space in context of clas-sical coupled thermoelasticity and generalized thermoelasticity in a unified system of equations. The half space is con-sidered to be made of an isotropic homogeneous thermoelastic material. The bounding plane surface is heated by a non-Gaussian laser beam with pulse duration of 2 ps. An exact solution of the problem is first obtained in Laplace transform space. Since the response is of more interest in the transient state, the inversion of Laplace transforms have been carried numerically. The derived expressions are computed numerically for copper and the results are presented in graphical form.
文摘In this work, a mathematical model of an elastic material with cylindrical cavity will be constructed. The governing equations will be taken into the context of the fractional order generalized thermoelasticity theory (Youssef 2010). Laplace transform and direct approach will be used to obtain the solution when the boundary of the cavity is exposed to harmonically heat with constant angular frequency of thermal vibration. The inverse of Laplace transforms will be computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to present the effect of the fractional order parameter and the angular frequency of thermal vibration on all the studied felids.
文摘The non-Fourier effect in heat conduction and the coupling effect between temperature and strain rate, became the most significant effects in the nano-scale beam. In the present study, a generalized solution for the generalized thermoelastic vibration of a bounded nano-beam resonator induced by ramp type of heating is developed and the solutions take into account the above two effects. The Laplace transforms and direct method are used to determine the lateral vibration, the temperature, the displacement, the stress and the energy of the beam. The effects of the relaxation time and the ramping time parameters have been studied with some comparisons.
文摘In this paper, we will study the most important effects in the nano-scale resonator: the coupling effect of temperature and strain rate, and the non-Fourier effect in heat conduction. A solution for the generalized thermoelastic vibration of nano-resonator induced by thermal loading has been developed. The Young’s modulus is taken as a linear function of the reference temperature. The effects of the thermal loading and the reference temperature in all the studied fields have been studied and represented in graphs with some comparisons. The Young’s modulus makes significant effects on all the studied fields where the values of the temperature, the vibration of the deflection, stress, displacement, strain, stress-strain energy increase when the Young’s modulus has taken to be variable.