Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration lev...Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration level,the precise and efficient control of the propagation of electromagnetic waves and heat fluxes simultaneously is particularly important.In this study,we propose a graphical designing method(i.e.,thermal-electromagnetic surface transformation)based on thermal-electromagnetic null medium to simultaneously control the propagation of electromagnetic waves and thermal fields according to the pre-designed paths.A thermal-electromagnetic cloak,which can create a cloaking effect on both electromagnetic waves and thermal fields simultaneously,is designed by thermal-electromagnetic surface transformation and verified by both numerical simulations and experimental measurements.The thermal-electromagnetic surface transformation proposed in this study provides a new methodology for simultaneous controlling on electromagnetic and temperature fields,and may have significant applications in improving thermal-electromagnetic compatibility problem,protecting of thermal-electromagnetic sensitive components,and improving efficiency of energy usage for complex onchip systems.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61971300, 12274317, 12374277, 61905208)Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (No. ZBKF2022031202)+1 种基金Scientific and Technological Innovation Programs (STIP) of Higher Education Institutions in Shanxi (Nos. 2019L0159 and 2019L0146)2022 University Outstanding Youth Foundation of Taiyuan University of Technology
文摘Simultaneously manipulating multiple physical fields plays an important role in the increasingly complex integrated systems,aerospace equipment,biochemical productions,etc.For on-chip systems with high integration level,the precise and efficient control of the propagation of electromagnetic waves and heat fluxes simultaneously is particularly important.In this study,we propose a graphical designing method(i.e.,thermal-electromagnetic surface transformation)based on thermal-electromagnetic null medium to simultaneously control the propagation of electromagnetic waves and thermal fields according to the pre-designed paths.A thermal-electromagnetic cloak,which can create a cloaking effect on both electromagnetic waves and thermal fields simultaneously,is designed by thermal-electromagnetic surface transformation and verified by both numerical simulations and experimental measurements.The thermal-electromagnetic surface transformation proposed in this study provides a new methodology for simultaneous controlling on electromagnetic and temperature fields,and may have significant applications in improving thermal-electromagnetic compatibility problem,protecting of thermal-electromagnetic sensitive components,and improving efficiency of energy usage for complex onchip systems.