Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macros...Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices.展开更多
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ...Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.展开更多
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ...All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i...Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.展开更多
Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex s...Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex structures and are increasingly recognized as efective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional(2D)systems and ethical concerns.The inherent plasticity of skin organoids allows for their construction into physiological and pathological models,enabling the study of skin development and dynamic changes.This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages.Furthermore,it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques,such as 3D printing and microfuidic devices.The review also summarizes and discusses the diverse applications of skin organoids in developmental biology,disease modelling,regenerative medicine,and personalized medicine,while considering their prospects and limitations.展开更多
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de...Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.展开更多
Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key ...Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape.展开更多
Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since ...Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.展开更多
Nowadays, astronomy has entered the era of Time-Domain Astronomy, and the study of the time-varying light curves of various types of objects is of great significance in revealing the physical properties and evolutiona...Nowadays, astronomy has entered the era of Time-Domain Astronomy, and the study of the time-varying light curves of various types of objects is of great significance in revealing the physical properties and evolutionary history of celestial bodies. The Ground-based Wide Angle Cameras telescope, on which this paper is based, has observed more than 10 million light curves, and the detection of anomalies in the light curves can be used to rapidly detect transient rare phenomena such as microgravity lensing events from the massive data. However, the traditional statistically based anomaly detection methods cannot realize the fast processing of massive data. In this paper, we propose a Discrete Wavelet(DW)-Gate Recurrent Unit-Attention(GRU-Attention) light curve warning model. Wavelet transform has good effect on data noise reduction processing and feature extraction, which can provide richer and more stable input features for a neural network, and the neural network can provide more flexible and powerful output model for wavelet transform. Comparison experiments show an average improvement of 61% compared to the previous pure long-short-term memory unit(LSTM) model, and an average improvement of 53.5% compared to the previous GRU model. The efficiency and accuracy of anomaly detection in previous paper work are not good enough, the method proposed in this paper possesses higher efficiency and accuracy,which incorporates the Attention mechanism to find out the key parts of the light curve that determine the anomalies. These parts are assigned higher weights, and in the actual anomaly detection, the star is detected with83.35% anomalies on average, and the DW-GRU-Attention model is compared with the DW-LSTM model, and the detection result f1 is improved by 5.75% on average, while having less training time, thus providing valuable information and guidance for astronomical observation and research.展开更多
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o...Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.展开更多
Currently,the iron chromium redox flow battery(ICRFB)has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up.However,the activity of electrolyte is still ambiguous due to i...Currently,the iron chromium redox flow battery(ICRFB)has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up.However,the activity of electrolyte is still ambiguous due to its complicated solution environment.Herein,we performed a pioneering investigation on the coordination behavior and transformation mechanism of Cr^(3+)in electrolyte and prediction of impurity ions impact through quantum chemistry computations.Based on the structure and symmetry of electrostatic potential distribution,the activity of different Cr^(3+)complex ions is confirmed as[Cr(H2O)5Cl]^(2+)>[Cr(H2O)4Cl2]+>[Cr(H2O)6]^(3+).The transformation mechanism between[Cr(H2O)6]^(3+)and[Cr(H2O)5Cl]^(2+)is revealed.We find the metal impurity ions(especially Mg^(2+))can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from[Cr(H2O)5Cl]^(2+)(24.38 kcal mol^(−1))to[Cr(H2O)6]^(3+)(16.23 kcal mol^(−1)).The solvent radial distribution and mean square displacement in different solvent environments are discussed and we conclude that the coordination configuration limits the diffusivity of Cr^(3+).This work provides new insights into the activity of electrolyte,laying a fundamental sense for the electrolyte in ICRFB.展开更多
Hydroxyl-terminated polybutadiene/toluene diisocyanate(HTPB/TDI)system is widely used in composite solid propellants.The migrations of plasticizers and water molecules from solid propellants and surrounding environmen...Hydroxyl-terminated polybutadiene/toluene diisocyanate(HTPB/TDI)system is widely used in composite solid propellants.The migrations of plasticizers and water molecules from solid propellants and surrounding environment to the inhibitor have always been the important issues.This study focuses on the preparation,characterization and anti-migration behavior of graphene oxide(GO)/HTPB nanocomposite liner.The GO/HTPB(GH)composite liners affect the migration of small molecules through a tighter cross-linked structure and weakening function of small molecule adsorption.The anti-migration performance of the liner at different temperatures was analyzed,and the influence of the added amount of GO on the anti-migration performance and adhesion performance was also systematically studied.The overall performance of the liner is optimized when the amount of GO filler is 0.3 wt%.After adding 0.3 wt%GO,the concentration of dioctyl sebacate(DOS)migrated into the liner is decreased by 23.28%,and the concentration of water molecules is decreased by 51.89%,indicating that the introduction of GO can significantly improve the anti-migration performance of the liner.In addition,the bond strength is greatly increased from 0.25 MPa to 0.95 MPa,which meets the application requirements of the current propellant system.This research provides an important way for the preparation of structure-function synergistic anti-migration composite liners.展开更多
BACKGROUND Chronic heart failure(CHF)is a serious and prevalent condition characterized by impaired cardiac function and inflammation.Standard therapy for CHF has limitations,prompting the exploration of alternative t...BACKGROUND Chronic heart failure(CHF)is a serious and prevalent condition characterized by impaired cardiac function and inflammation.Standard therapy for CHF has limitations,prompting the exploration of alternative treatments.Recombinant human brain natriuretic peptide(BNP)has emerged as a potential therapy,with evidence suggesting that it can improve cardiac function and reduce inflammation in patients with CHF.However,further research is required to determine the efficacy and safety of lyophilized recombinant human BNP in CHF patients and its impact on microinflammatory status.This study aimed to investigate the effects of lyophilized recombinant human BNP therapy on CHF patients’cardiac function and microinflammatory status.AIM To investigate the effects of freeze-dried recombinant human BNP therapy on cardiac function and microinflammatory status in patients with CHF.METHODS In total,102 CHF patients admitted to our hospital from January 2021 to January 2022 were randomly assigned to control and observation groups(n=51 patients/group).The control patients were treated with standard HF therapy for 3 d,whereas the observational patients were injected with the recombinant human BNP for 3 d.Clinical efficacy,inflammatory factor levels,myocardial damage,cardiac function before and after the treatment,and adverse reactions during treatment were compared between the two groups.RESULTS The overall clinical efficacy was higher in the observation group than in the control group.Compared with baseline,serum hypersensitive C-reactive protein,N-terminal proBNP,and troponin I level,and physical,emotional,social,and economic scores were lower in both groups after treatment,with greater reductions in levels and scores noted in the observation group than in the control group.The overall incidence of adverse reactions in the observation group was not significantly different compared with that in the control group(P>0.05).CONCLUSION Freeze-dried recombinant human BNP therapy can improve heart function and enhance microinflammatory status,thereby improving overall quality of life without any obvious side effects.This therapy is safe and reliable.展开更多
BACKGROUND The multidisciplinary team(MDT)has been carried out in many large hospitals now.However,given the costs of time and money and with little strong evidence of MDT effectiveness being reported,critiques of MDT...BACKGROUND The multidisciplinary team(MDT)has been carried out in many large hospitals now.However,given the costs of time and money and with little strong evidence of MDT effectiveness being reported,critiques of MDTs persist.AIM To evaluate the effects of MDTs on patients with synchronous colorectal liver metastases and share our opinion on management of synchronous colorectal liver metastases.METHODS In this study we collected clinical data of patients with synchronous colorectal liver metastases from February 2014 to February 2017 in the Chinese People’s Liberation Army General Hospital and subsequently divided them into an MDT+group and an MDT-group.In total,93 patients in MDT+group and 169 patients in MDT-group were included totally.RESULTS Statistical increases in the rate of chest computed tomography examination(P=0.001),abdomen magnetic resonance imaging examination(P=0.000),and preoperative image staging(P=0.0000)were observed in patients in MDT+group.Additionally,the proportion of patients receiving chemotherapy(P=0.019)and curative resection(P=0.042)was also higher in MDT+group.Multivariable analysis showed that the population of patients assessed by MDT meetings had higher 1-year[hazard ratio(HR)=0.608,95%confidence interval(CI):0.398-0.931,P=0.022]and 5-year(HR=0.694,95%CI:0.515-0.937,P=0.017)overall survival.CONCLUSION These results proved that MDT management did bring patients with synchronous colorectal liver metastases more opportunities for comprehensive examination and treatment,resulting in better outcomes.展开更多
目的:分析糖尿病患者营养护理的研究现状和热点,以期为糖尿病营养护理领域研究提供参考。方法:检索中国知网、万方、维普、PubMed和Web of Science数据库中收录的关于糖尿病营养护理的研究文献,采用Bicomb2.0软件进行文献计量学分析,通...目的:分析糖尿病患者营养护理的研究现状和热点,以期为糖尿病营养护理领域研究提供参考。方法:检索中国知网、万方、维普、PubMed和Web of Science数据库中收录的关于糖尿病营养护理的研究文献,采用Bicomb2.0软件进行文献计量学分析,通过SPSS 25.0软件生成高频关键词聚类树状图。结果:共纳入文献1423篇(中文文献1380篇,英文文献43篇),获得高频关键词28个;通过共词聚类分析共得到5个研究热点,分别是饮食干预对提升糖尿病肾病及老年糖尿病患者营养状况和生活质量的研究,个体化营养护理对改善妊娠期糖尿病妊娠结局及减少并发症的研究,健康教育在糖尿病足患者营养护理中的作用,糖尿病合并肺结核患者的营养支持以及糖尿病合并胃癌、食管癌围手术期的肠内营养研究。结论:糖尿病患者营养护理领域日益受到关注,现已形成多个研究热点,临床护理人员可借鉴参考,进一步深入开展相关研究,完善糖尿病患者的营养管理策略。展开更多
基金the National Natural Science Foundation of China(No.51972162).
文摘Graphene-based thermally conductive composites have been proposed as effective thermal management materials for cooling high-power electronic devices.However,when flexible graphene nanosheets are assembled into macroscopic thermally conductive composites,capillary forces induce shrinkage of graphene nanosheets to form wrinkles during solution-based spontaneous drying,which greatly reduces the thermal conductivity of the composites.Herein,graphene nanosheets/aramid nanofiber(GNS/ANF)composite films with high thermal conductivity were prepared by in-plane stretching of GNS/ANF composite hydrogel networks with hydrogen bonds andπ-πinteractions.The in-plane mechanical stretching eliminates graphene nanosheets wrinkles by suppressing inward shrinkage due to capillary forces during drying and achieves a high in-plane orientation of graphene nanosheets,thereby creating a fast in-plane heat transfer channel.The composite films(GNS/ANF-60 wt%)with eliminated graphene nanosheets wrinkles showed a significant increase in thermal conductivity(146 W m^(−1)K^(−1))and tensile strength(207 MPa).The combination of these excellent properties enables the GNS/ANF composite films to be effectively used for cooling flexible LED chips and smartphones,showing promising applications in the thermal management of high-power electronic devices.
基金supported by the National Natural Science Foundation of China(22278110)China Postdoctoral Science Foundation(2022M720984)+1 种基金the Natural Science Foundation of Hebei Province of China(B2021202012)Tianjin Technical Innovation Guidance Special Project(20YDTPJC00630).
文摘Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications.
基金supported by the Ensemble Grant for Early Career Researchers 2022 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,the Iwatani Naoji Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,and JP18H05513+2 种基金the Center for Computational Materials Science,Institute for Materials Research,Tohoku University for the use of MASAMUNEIMR(Nos.202212-SCKXX0204 and 202208-SCKXX-0212)the Institute for Solid State Physics(ISSP)at the University of Tokyo for the use of their supercomputersthe China Scholarship Council(CSC)fund to pursue studies in Japan.
文摘All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金supported by research grants from the Ningbo Science and Technology Plan Project,No.2022Z143hezuo(to BL)the National Natural Science Foundation of China,No.82201520(to XD)。
文摘Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
基金suppor ted by the National Key Research and Development Program of China(2022YFA1104800)the Beijing Nova Program(20220484100)+6 种基金the National Natural Science Foundation of China(81873939)the Open Research Fund of State Key Laboratory of Cardiovascular Disease,Fuwai Hospital(2022KF-04)the Clinical Medicine Plus X-Young Scholars Projec t,Pek ing Universit y(PKU2022LCXQ003)the Emerging Engineering InterdisciplinaryYoung Scholars Project,Peking University,the Fundamental Research Funds for the Central Universities(PKU2023XGK011)the Open Research Fund of State Key Laboratory of Digital Medical Engineering,Southeast University(2023K-01)the Open Research Fund of Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease,Beijing,China(DXWL2023-01)the Science and Technology Bureau Foundation Application Project of Changzhou(CJ20220118)。
文摘Signifcant advancements have been made in recent years in the development of highly sophisticated skin organoids.Serving as three-dimensional(3D)models that mimic human skin,these organoids have evolved into complex structures and are increasingly recognized as efective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional(2D)systems and ethical concerns.The inherent plasticity of skin organoids allows for their construction into physiological and pathological models,enabling the study of skin development and dynamic changes.This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages.Furthermore,it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques,such as 3D printing and microfuidic devices.The review also summarizes and discusses the diverse applications of skin organoids in developmental biology,disease modelling,regenerative medicine,and personalized medicine,while considering their prospects and limitations.
基金funded by the Science and Technology Innovation Project of the China Academy of Chinese Medical Sciences(Nos.CI2021A04618 and CI2021A01401).
文摘Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment.
基金financially supported by the National Natural Science Foundation of China(32201868 and 32001575)。
文摘Phosphorus(P)is essential for living plants,and P deficiency is one of the key factors limiting the yield in rapeseed production worldwide.As the most important organ for plants,root morphology traits(RMTs)play a key role in P absorption.To investigate the genetic variability of RMT under low P availability,we dissected the genetic structure of RMTs by genome-wide association studies(GWAS),linkage mapping and candidate gene association studies(CGAS).A total of 52 suggestive loci were associated with RMTs under P stress conditions in 405 oilseed rape accessions.The purple acid phosphatase gene BnPAP17 was found to control the lateral root number(LRN)and root dry weight(RDW)under low P stress.The expression of BnPAP17 was increased in shoot tissue in P-efficient cultivars compared to root tissue and P-inefficient cultivars in response to low P stress.Moreover,the haplotype of BnPAP17^(Hap3)was detected for the selective breeding of P efficiency in oilseed rape.Over-expression of the BnPAP17^(Hap3)could promote the shoot and root growth with enhanced tolerance to low P stress and organic phosphorus(Po)utilization in oilseed rape.Collectively,these findings increase our understanding of the mechanisms underlying BnPAP17-mediated low P stress tolerance in oilseed rape.
基金the Hong Kong Polytechnic University(Q-CDBG),the Science and Technology Program of Guangdong Province of China(2020A0505090001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU152178/20E)+2 种基金the National Natural Science Foundation of China(22379052)the Natural Science Foundation of Guangdong(No.2022A1515011667)China Postdoctoral Science Foundation(2021T140268).
文摘Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.
基金supported by the National Key Research and Development Program of China(grant id:2022YFF0711500)the National Natural Science Foundation of China(grant id:11803022 and grant id:1227307712273077)。
文摘Nowadays, astronomy has entered the era of Time-Domain Astronomy, and the study of the time-varying light curves of various types of objects is of great significance in revealing the physical properties and evolutionary history of celestial bodies. The Ground-based Wide Angle Cameras telescope, on which this paper is based, has observed more than 10 million light curves, and the detection of anomalies in the light curves can be used to rapidly detect transient rare phenomena such as microgravity lensing events from the massive data. However, the traditional statistically based anomaly detection methods cannot realize the fast processing of massive data. In this paper, we propose a Discrete Wavelet(DW)-Gate Recurrent Unit-Attention(GRU-Attention) light curve warning model. Wavelet transform has good effect on data noise reduction processing and feature extraction, which can provide richer and more stable input features for a neural network, and the neural network can provide more flexible and powerful output model for wavelet transform. Comparison experiments show an average improvement of 61% compared to the previous pure long-short-term memory unit(LSTM) model, and an average improvement of 53.5% compared to the previous GRU model. The efficiency and accuracy of anomaly detection in previous paper work are not good enough, the method proposed in this paper possesses higher efficiency and accuracy,which incorporates the Attention mechanism to find out the key parts of the light curve that determine the anomalies. These parts are assigned higher weights, and in the actual anomaly detection, the star is detected with83.35% anomalies on average, and the DW-GRU-Attention model is compared with the DW-LSTM model, and the detection result f1 is improved by 5.75% on average, while having less training time, thus providing valuable information and guidance for astronomical observation and research.
基金supported by the Ensemble Grant for Early Career Researchers 2022-2023 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,JP18H05513,and JP23K13542.F.Y.and Q.W.acknowledge the China Scholarship Council(CSC)to support their studies in Japan.
文摘Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs.
基金Fundamental Research Funds for the Central Universities(2023MS125)。
文摘Currently,the iron chromium redox flow battery(ICRFB)has become a research hotspot in the energy storage field owing to its low cost and easily-scaled-up.However,the activity of electrolyte is still ambiguous due to its complicated solution environment.Herein,we performed a pioneering investigation on the coordination behavior and transformation mechanism of Cr^(3+)in electrolyte and prediction of impurity ions impact through quantum chemistry computations.Based on the structure and symmetry of electrostatic potential distribution,the activity of different Cr^(3+)complex ions is confirmed as[Cr(H2O)5Cl]^(2+)>[Cr(H2O)4Cl2]+>[Cr(H2O)6]^(3+).The transformation mechanism between[Cr(H2O)6]^(3+)and[Cr(H2O)5Cl]^(2+)is revealed.We find the metal impurity ions(especially Mg^(2+))can exacerbate the electrolyte deactivation by reducing the transformation energy barrier from[Cr(H2O)5Cl]^(2+)(24.38 kcal mol^(−1))to[Cr(H2O)6]^(3+)(16.23 kcal mol^(−1)).The solvent radial distribution and mean square displacement in different solvent environments are discussed and we conclude that the coordination configuration limits the diffusivity of Cr^(3+).This work provides new insights into the activity of electrolyte,laying a fundamental sense for the electrolyte in ICRFB.
基金the financial support of the National Natural Science Foundation of China(grant number 22005145)the Natural Science Foundation of Jiangsu Province(grant number BK20180495,BK20180698)+1 种基金the Opening Project of Key Laboratory of Special Energy Materials(Nanjing University of Science and Technology)the Fundamental Research Funds for the Priority Academic Program Development of Jiangsu Higher Education Institutions(grant number 30919011404)。
文摘Hydroxyl-terminated polybutadiene/toluene diisocyanate(HTPB/TDI)system is widely used in composite solid propellants.The migrations of plasticizers and water molecules from solid propellants and surrounding environment to the inhibitor have always been the important issues.This study focuses on the preparation,characterization and anti-migration behavior of graphene oxide(GO)/HTPB nanocomposite liner.The GO/HTPB(GH)composite liners affect the migration of small molecules through a tighter cross-linked structure and weakening function of small molecule adsorption.The anti-migration performance of the liner at different temperatures was analyzed,and the influence of the added amount of GO on the anti-migration performance and adhesion performance was also systematically studied.The overall performance of the liner is optimized when the amount of GO filler is 0.3 wt%.After adding 0.3 wt%GO,the concentration of dioctyl sebacate(DOS)migrated into the liner is decreased by 23.28%,and the concentration of water molecules is decreased by 51.89%,indicating that the introduction of GO can significantly improve the anti-migration performance of the liner.In addition,the bond strength is greatly increased from 0.25 MPa to 0.95 MPa,which meets the application requirements of the current propellant system.This research provides an important way for the preparation of structure-function synergistic anti-migration composite liners.
文摘BACKGROUND Chronic heart failure(CHF)is a serious and prevalent condition characterized by impaired cardiac function and inflammation.Standard therapy for CHF has limitations,prompting the exploration of alternative treatments.Recombinant human brain natriuretic peptide(BNP)has emerged as a potential therapy,with evidence suggesting that it can improve cardiac function and reduce inflammation in patients with CHF.However,further research is required to determine the efficacy and safety of lyophilized recombinant human BNP in CHF patients and its impact on microinflammatory status.This study aimed to investigate the effects of lyophilized recombinant human BNP therapy on CHF patients’cardiac function and microinflammatory status.AIM To investigate the effects of freeze-dried recombinant human BNP therapy on cardiac function and microinflammatory status in patients with CHF.METHODS In total,102 CHF patients admitted to our hospital from January 2021 to January 2022 were randomly assigned to control and observation groups(n=51 patients/group).The control patients were treated with standard HF therapy for 3 d,whereas the observational patients were injected with the recombinant human BNP for 3 d.Clinical efficacy,inflammatory factor levels,myocardial damage,cardiac function before and after the treatment,and adverse reactions during treatment were compared between the two groups.RESULTS The overall clinical efficacy was higher in the observation group than in the control group.Compared with baseline,serum hypersensitive C-reactive protein,N-terminal proBNP,and troponin I level,and physical,emotional,social,and economic scores were lower in both groups after treatment,with greater reductions in levels and scores noted in the observation group than in the control group.The overall incidence of adverse reactions in the observation group was not significantly different compared with that in the control group(P>0.05).CONCLUSION Freeze-dried recombinant human BNP therapy can improve heart function and enhance microinflammatory status,thereby improving overall quality of life without any obvious side effects.This therapy is safe and reliable.
文摘BACKGROUND The multidisciplinary team(MDT)has been carried out in many large hospitals now.However,given the costs of time and money and with little strong evidence of MDT effectiveness being reported,critiques of MDTs persist.AIM To evaluate the effects of MDTs on patients with synchronous colorectal liver metastases and share our opinion on management of synchronous colorectal liver metastases.METHODS In this study we collected clinical data of patients with synchronous colorectal liver metastases from February 2014 to February 2017 in the Chinese People’s Liberation Army General Hospital and subsequently divided them into an MDT+group and an MDT-group.In total,93 patients in MDT+group and 169 patients in MDT-group were included totally.RESULTS Statistical increases in the rate of chest computed tomography examination(P=0.001),abdomen magnetic resonance imaging examination(P=0.000),and preoperative image staging(P=0.0000)were observed in patients in MDT+group.Additionally,the proportion of patients receiving chemotherapy(P=0.019)and curative resection(P=0.042)was also higher in MDT+group.Multivariable analysis showed that the population of patients assessed by MDT meetings had higher 1-year[hazard ratio(HR)=0.608,95%confidence interval(CI):0.398-0.931,P=0.022]and 5-year(HR=0.694,95%CI:0.515-0.937,P=0.017)overall survival.CONCLUSION These results proved that MDT management did bring patients with synchronous colorectal liver metastases more opportunities for comprehensive examination and treatment,resulting in better outcomes.
文摘目的:分析糖尿病患者营养护理的研究现状和热点,以期为糖尿病营养护理领域研究提供参考。方法:检索中国知网、万方、维普、PubMed和Web of Science数据库中收录的关于糖尿病营养护理的研究文献,采用Bicomb2.0软件进行文献计量学分析,通过SPSS 25.0软件生成高频关键词聚类树状图。结果:共纳入文献1423篇(中文文献1380篇,英文文献43篇),获得高频关键词28个;通过共词聚类分析共得到5个研究热点,分别是饮食干预对提升糖尿病肾病及老年糖尿病患者营养状况和生活质量的研究,个体化营养护理对改善妊娠期糖尿病妊娠结局及减少并发症的研究,健康教育在糖尿病足患者营养护理中的作用,糖尿病合并肺结核患者的营养支持以及糖尿病合并胃癌、食管癌围手术期的肠内营养研究。结论:糖尿病患者营养护理领域日益受到关注,现已形成多个研究热点,临床护理人员可借鉴参考,进一步深入开展相关研究,完善糖尿病患者的营养管理策略。