期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Near-field radiative heat transfer between nanoporous GaN films
1
作者 韩晓政 张纪红 +2 位作者 刘皓佗 吴小虎 冷惠文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期109-120,共12页
Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path... Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation. 展开更多
关键词 near-field radiative heat transfer nanoporous GaN film surface phonon polaritons surface plasmon polaritons
原文传递
Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials
2
作者 刘睿一 刘皓佗 +2 位作者 胡杨 崔峥 吴小虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期56-64,共9页
Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be... Relative rotation between the emitter and receiver could effectively modulate the near-field radiative heat transfer(NFRHT)in anisotropic media.Due to the strong in-plane anisotropy,natural hyperbolic materials can be used to construct near-field radiative modulators with excellent modulation effects.However,in practical applications,natural hyperbolic materials need to be deposited on the substrate,and the influence of substrate on modulation effect has not been studied yet.In this work,we investigate the influence of substrate effect on near-field radiative modulator based onα-MoO_(3).The results show that compared to the situation without a substrate,the presence of both lossless and lossy substrate will reduce the modulation contrast(MC)for different film thicknesses.When the real or imaginary component of the substrate permittivity increases,the mismatch of hyperbolic phonon polaritons(HPPs)weakens,resulting in a reduction in MC.By reducing the real and imaginary components of substrate permittivity,the MC can be significantly improved,reaching 4.64 forε_(s)=3 at t=10 nm.This work indicates that choosing a substrate with a smaller permittivity helps to achieve a better modulation effect,and provides guidance for the application of natural hyperbolic materials in the near-field radiative modulator. 展开更多
关键词 near-field radiative modulator substrate effect hyperbolic material modulation contrast
原文传递
Enhanced near-field radiative heat transfer between core-shell nanoparticles through surface modes hybridization
3
作者 Yang Hu haotuo liu +4 位作者 Bing Yang Kezhang Shi Mauro Antezza Xiaohu Wu Yasong Sun 《Fundamental Research》 CAS CSCD 2024年第5期1092-1099,共8页
Core-shell nanoparticles(CSNPs)are widely used in energy harvesting,conversion,and thermal management due to the excellent physical properties of different components.Because of the synergistic interaction between the... Core-shell nanoparticles(CSNPs)are widely used in energy harvesting,conversion,and thermal management due to the excellent physical properties of different components.Because of the synergistic interaction between the core and the shell,the thermal radiative properties are expected to be further enhanced.In this work,we achieve near-field radiative heat transfer(NFRHT)enhancement between SiC@Drude CSNPs.Numerical results show that the total heat flux between NPs is 1.47 times and 9.98 times higher than homogeneous SiC and Drude NPs at the same radius when the core volume fraction is 0.76.Surface modes hybridization arising from the interfaces of the shell-core and shell-air contributes to the improved thermal radiation.The effect of shift frequency on the NFRHT between SiC@Drude CSNPs is studied,showing that the enhancement ratio of NFRHT between CSNPs can reach 4.34 at a shift frequency of 1×10^(14) rad/s,which is 38.34 times higher than the previous work.This study demonstrates that surface modes hybridization in CSNPs can significantly improve NFRHT and open a novel path for high-efficiency energy transport at the nanoscale. 展开更多
关键词 Near-field radiative heat transfer Core-shell nanoparticle Homogeneous nanoparticle Surface modes hybridization Shift frequency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部