Carboxylic acid-functionalized nano-sized magnetic composite polymers (COOH-NMPs) were synthesized and used for the preparation of the modified glassy carbon electrode, i.e., COOH-NMPs/GCE and DNA/COOH-NMPs/GCE. The e...Carboxylic acid-functionalized nano-sized magnetic composite polymers (COOH-NMPs) were synthesized and used for the preparation of the modified glassy carbon electrode, i.e., COOH-NMPs/GCE and DNA/COOH-NMPs/GCE. The electrochemical behaviors of melamine (MM) were investigated on COOH-NMPs/GCE by cyclic voltammetry (CV) in both cases of DNA in the solution and immobilized on the electrode surface. The electron transfer coefficient (a) and the rate constant (ks) kept unchanged in the absence and presence of DNA. Based on the electrochemical properties of the interaction of MM on the surface of the DNA/COOH-NMPs/GCE, a direct method for the determination of MM in liquid milk was established. The detection limit of this method was 2.0 ng·L﹣1, with average recoveries at 95.9% - 104.2% and RSD at 4.5% - 8.2%. The proposed method was provided to have a good accuracy, high stability and good reproducibility with a simple and environmental friendly process. 10 kinds of liquid milk samples bought from the market randomly were tested, and only 1 of them was found at relatively low level of MM residue with the amount of 0.12 ug·L﹣1.展开更多
In response to the prevailing scarcity of labor and with the aim of augmenting the proportion of premium-quality fruits, a robotic grading end-effector system for harvesting was meticulously designed. The end-effector...In response to the prevailing scarcity of labor and with the aim of augmenting the proportion of premium-quality fruits, a robotic grading end-effector system for harvesting was meticulously designed. The end-effector could measure the soluble solid content (SSC) of peaches during the harvesting process to evaluate the quality of the fruit, thereby facilitating real-time grading during harvesting. As comprising a harvesting component and an information-gathering segment, the end-effector system was optimized with the primary structural parameters of its adaptive fingers using a mathematical model of peach morphology. Also, the buffering materials for mitigating the pressure exerted by the adaptive fingers on the peaches were compared. Furthermore, feasibility analyses of the grasping actions were conducted based on the interaction forces between the adaptive fingers and the peaches. To grade the quality of peaches, SSC was used as an indicator to assess and grade the quality of the peaches. The spectra of peaches within the wavelength range of 590-1100 nm were collected, and a predictive model for SSC was developed. The correlation coefficients for the calibration set and prediction sets of the predictive model were 0.880 and 0.890, with corresponding root mean square errors of 0.370% and 0.357% Brix, respectively. In addition, a robustness and accuracy assessment was conducted using 30 peach samples, yielding a correlation coefficient of 0.936 and a standard error of 0.386% Brix between the predicted and measured values of SSC. The results confirm that the end-effector can measure the SSC of peaches during the collection process, providing novel concepts and theoretical foundations for real-time harvesting and grading.展开更多
文摘Carboxylic acid-functionalized nano-sized magnetic composite polymers (COOH-NMPs) were synthesized and used for the preparation of the modified glassy carbon electrode, i.e., COOH-NMPs/GCE and DNA/COOH-NMPs/GCE. The electrochemical behaviors of melamine (MM) were investigated on COOH-NMPs/GCE by cyclic voltammetry (CV) in both cases of DNA in the solution and immobilized on the electrode surface. The electron transfer coefficient (a) and the rate constant (ks) kept unchanged in the absence and presence of DNA. Based on the electrochemical properties of the interaction of MM on the surface of the DNA/COOH-NMPs/GCE, a direct method for the determination of MM in liquid milk was established. The detection limit of this method was 2.0 ng·L﹣1, with average recoveries at 95.9% - 104.2% and RSD at 4.5% - 8.2%. The proposed method was provided to have a good accuracy, high stability and good reproducibility with a simple and environmental friendly process. 10 kinds of liquid milk samples bought from the market randomly were tested, and only 1 of them was found at relatively low level of MM residue with the amount of 0.12 ug·L﹣1.
基金supported by the National Natural Science Foundation of China (Grant No. U23A20175)the “Leading Goose” R&D Program of Zhejiang (Grant No. 2022C02052)+1 种基金the Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Y202250747)Wenzhou Science and Technology Commissioner Special Project (Grant No. X2023045).
文摘In response to the prevailing scarcity of labor and with the aim of augmenting the proportion of premium-quality fruits, a robotic grading end-effector system for harvesting was meticulously designed. The end-effector could measure the soluble solid content (SSC) of peaches during the harvesting process to evaluate the quality of the fruit, thereby facilitating real-time grading during harvesting. As comprising a harvesting component and an information-gathering segment, the end-effector system was optimized with the primary structural parameters of its adaptive fingers using a mathematical model of peach morphology. Also, the buffering materials for mitigating the pressure exerted by the adaptive fingers on the peaches were compared. Furthermore, feasibility analyses of the grasping actions were conducted based on the interaction forces between the adaptive fingers and the peaches. To grade the quality of peaches, SSC was used as an indicator to assess and grade the quality of the peaches. The spectra of peaches within the wavelength range of 590-1100 nm were collected, and a predictive model for SSC was developed. The correlation coefficients for the calibration set and prediction sets of the predictive model were 0.880 and 0.890, with corresponding root mean square errors of 0.370% and 0.357% Brix, respectively. In addition, a robustness and accuracy assessment was conducted using 30 peach samples, yielding a correlation coefficient of 0.936 and a standard error of 0.386% Brix between the predicted and measured values of SSC. The results confirm that the end-effector can measure the SSC of peaches during the collection process, providing novel concepts and theoretical foundations for real-time harvesting and grading.