期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Self-supported ultrathin NiCo layered double hydroxides nanosheets electrode for efficient electrosynthesis of formate 被引量:1
1
作者 haoyuan chi Jianlong Lin +6 位作者 Siyu Kuang Minglu Li Hai Liu Qun Fan Tianxiang Yan Sheng Zhang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期267-275,I0008,共10页
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,... Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions. 展开更多
关键词 CO_(2)reduction Methanol oxidation reaction FORMATE Layered double hydroxides Oxygen vacancies
下载PDF
Scaled-up synthesis of defect-rich layered double hydroxide monolayers without organic species for efficient oxygen evolution reaction 被引量:3
2
作者 haoyuan chi Jingwen Dong +9 位作者 Tian Li Sha Bai Ling Tan Jikang Wang Tianyang Shen Guihao Liu Lihong Liu Luyi Sun Yufei Zhao Yu-Fei Song 《Green Energy & Environment》 SCIE EI CSCD 2022年第5期975-982,共8页
The scaled-up synthesis of organic-free monolayer nanomaterials is highly desirable,especially in obtaining green energy by electrocatalysis.In this study,a method for the scaled-up synthesis of the series of monolaye... The scaled-up synthesis of organic-free monolayer nanomaterials is highly desirable,especially in obtaining green energy by electrocatalysis.In this study,a method for the scaled-up synthesis of the series of monolayer layered double hydroxides(LDHs)without the addition of organic solvents is reported via the separate nucleation and aging steps process.The resulting monolayer LDHs with the thicknesses of less than 1 nm showed a narrow thickness distribution.X-ray absorption fine-structure revealed that monolayer NiFe-LDH nanosheets have a number of oxygen and metal vacancies defects.As a practical application,monolayer NiFe-LDH nanosheets containing defects showed an enhanced electrocatalytic water oxidation activity compared with that of bulk NiFe-LDH.Density functional theory calculations uncovered that excellent catalytic activity is attributed to vacancies defects.The proposed method is an economical and universally applicable strategy for the scaled-up production of monolayer LDHs. 展开更多
关键词 process SYNTHESIS MONOLAYER
下载PDF
Tandem electrocatalysis for CO_(2) reduction to multi-carbons
3
作者 Xindi Li Tianxiang Yan +7 位作者 Yichen Meng Zhanpeng Liang Tianying Zhang haoyuan chi Ziting Fan Yifan Jin Haoran Zhang Sheng Zhang 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第11期3631-3651,共21页
The rising CO_(2) concentration in the atmosphere due to extensive use of fossil fuels has led to serious climate and environmental issues. One efficient solution is that CO_(2) capture from industrial emissions follo... The rising CO_(2) concentration in the atmosphere due to extensive use of fossil fuels has led to serious climate and environmental issues. One efficient solution is that CO_(2) capture from industrial emissions followed its conversion into value-added chemicals driven by renewable energies. CO_(2) electroreduction(CO_(2) RR) features a green and sustainable fashion towards effective CO_(2) conversion, but still suffers from low multi-carbon selectivity and yield. Considering the pivotal role of CO intermediate in C–C coupling to multi-carbon formation, tandem CO_(2) RR systems with separated CO generation and consumption components could facilitate the coupling between *CO-based intermediates to energy-intensive multi-carbons by manipulating CO diffusion and surface coverage. In this aspect, we comprehensively reviewed the design principles of tandem systems for CO_(2) electroreduction reaction. The chemistry behind the C–C coupling regarding to their distribution and diffusion was initially introduced, which was followed by achievements on tandem architectures, from catalysts, electrodes to systems. Future directions and perspectives on advanced tandem system designs for CO_(2) RR were discussed at the end. This review contributes to the understanding of structureperformance correlations in tandem catalysis and helps guide the effective collection of multi-carbons of high-yield and highselectivity. 展开更多
关键词 electrocatalytic CO_(2)reduction tandem electrocatalysis design CO mass transfer model
原文传递
Intermetallic CuAu nanoalloy for stable electrochemical CO_(2) reduction 被引量:1
4
作者 Siyu Kuang Minglu Li +6 位作者 Xiaoyi Chen haoyuan chi Jianlong Lin Zheng Hu Shi Hu Sheng Zhang Xinbin Ma 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期226-229,共4页
Copper is one of the most efficient catalysts widely investigated in electrochemical CO_(2) reduction, however, the further development of copper-based catalysts is constrained by severe stability problems. In this wo... Copper is one of the most efficient catalysts widely investigated in electrochemical CO_(2) reduction, however, the further development of copper-based catalysts is constrained by severe stability problems. In this work, we developed a method for the synthesis of highly ordered Cu Au intermetallic nanoalloys(o-CuAu) under mild conditions(< 250℃), which can convert carbon dioxide to carbon monoxide with high selectivity and can operate stably for 160 h without current decay. The improved stability is believed to be due to the increased mixing enthalpy and stronger atomic interactions between Cu and Au atoms in the intermetallic nanoalloy. In addition, XPS results, Tafel slope and in situ IR spectroscopy demonstrate that high valence gold atoms on o-CuAu surface promote the reduction of CO_(2). In contrast, the disordered CuAu nanoalloy(d-CuAu) underwent atomic rearrangement to form a Cu-rich structure on the surface, leading to reduced stability. These findings may provide insight into the rational design of stable CO_(2) RR electrocatalysts through proper structural engineering. 展开更多
关键词 CO_(2)reduction CuAu nanoalloy INTERMETALLIC Stability ELECTROCATALYSTS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部