High arsenic(As)groundwater is a global problem primarily originating from As-enriched sediments.The provenance(source)and release mechanisms(sinks)of high As sediment have been identified,but the source-sink transfer...High arsenic(As)groundwater is a global problem primarily originating from As-enriched sediments.The provenance(source)and release mechanisms(sinks)of high As sediment have been identified,but the source-sink transfer is poorly understood,especially the influence of geological and surface processes.In this study,we explore the roles of tectonic movement and Yellow River evolution in provenance formation processes and evaluate the combined effects of provenance and sediment age on the As content of aquifer sediments in the northern Hetao Basin of Inner Mongolia.Based on optically stimulated luminescence(OSL)and 14C dating and detrital zircon U-Pb,As content,and lithological analyses of a 400 m core,we reconstructed As changes over the last 160 ka.Our results show clay deposited in a paleo-lake during the Gonghe movement period in the late Pleistocene(∼100 ka B.P.)is enriched in As(31.8μg/g)due to significant provenance contributions of the As-bearing Langshan Group under tectonic uplift and mountain erosion.In contrast,clay deposited in the middle Pleistocene(∼160 ka B.P.)has lower As content(7.3μg/g)due to the Yellow River as the primary provenance.Accordingly,the provenance of basin As forced by tectonic uplift and Yellow River evolution determines the background As of aquifer sediments.After deposition,sediment As content decays over time,with higher decay rates in coarse-grained sands than fine-grained.Overall,both provenance formation and sediment age,representing initial and dynamic states of solid phase As,jointly determine the As content of aquifer sediments.More solid phase As provided by younger sediments from the proximal orogenic provenance and reducing conditions due to frequent river-lake transitions,jointly lead to higher As concentrations in shallow groundwater.The study highlights the potential for using a combined analysis of the tectonic movement-surface processes-environment system to improve understanding of geogenic high As groundwater over global large sedimentary basins in the proximity of young orogenic belts.展开更多
Conventional manufacturing techniques to fabricate microfluidic chips,such as soft lithography and hot embossing process,have limitations that include difficulty in preparing multiple-layered structures,cost-and labor...Conventional manufacturing techniques to fabricate microfluidic chips,such as soft lithography and hot embossing process,have limitations that include difficulty in preparing multiple-layered structures,cost-and labor-consuming fabrication process,and low productivity.Digital light processing(DLP)technology has recently emerged as a costefficient microfabrication approach for the 3D printing of microfluidic chips;however,the fabrication resolution for microchannels is still limited to sub-100 microns at best.Here,we developed an innovative DLP printing strategy for high resolution and scalable microchannel fabrication by dosing-and zoning-controlled vat photopolymerization(DZC-VPP).Specifically,we proposed a modified mathematical model to precisely predict the accumulated UV irradiance for resin photopolymerization,thereby providing guidance for the fabrication of microchannels with enhanced resolution.By fine-tuning the printing parameters,including optical irradiance,exposure time,projection region,and step distance,we can precisely tailor the penetration irradiance stemming from the photopolymerization of the neighboring resin layers,thereby preventing channel blockage due to UV overexposure or compromised bonding stability owing to insufficient resin curing.Remarkably,this strategy can allow the preparation of microchannels with cross-sectional dimensions of 20μm×20μm using a commercial printer with a pixel size of 10μm×10μm;this is significantly higher resolution than previous reports.In addition,this method can enable the scalable and biocompatible fabrication of microfluidic drop-maker units that can be used for cell encapsulation.In general,the current DZC-VPP method can enable major advances in precise and scalable microchannel fabrication and represents a significant step forward for widespread applications of microfluidics-based techniques in biomedical fields.展开更多
Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the r...Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the regulation of degummed silk fibroin fibers (SFFs) extracted from Bombyx mori cocoons. SFFs play multiple roles in the formation of Au NPs such as reactive substrate to capture AuCl4^- ions by the chelation of -C = 0, reducing agent for Au(0) by the reduction of -OH , and modifiers to render biocompatible Au NPs by some functional groups and biomolecules. The as-prepared Au NPs with a size of 7-10 nm are embedded in the solid SFF substrate, and can disperse well in the liquid system by the disintegration of SFFs into silk fibroin (SF) in a certain CaCl2 solution. The biocompatible Au NPs exhibit uniform small size and distribute stably in both solid and solution states, which have distinctive properties and functional advantages, and bring great convenience to their storage and transportation.展开更多
BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and pr...BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more. OBJECTIVE: Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear. RESULTS AND CONCLUSION: In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42301094,41972192,and 41825017)。
文摘High arsenic(As)groundwater is a global problem primarily originating from As-enriched sediments.The provenance(source)and release mechanisms(sinks)of high As sediment have been identified,but the source-sink transfer is poorly understood,especially the influence of geological and surface processes.In this study,we explore the roles of tectonic movement and Yellow River evolution in provenance formation processes and evaluate the combined effects of provenance and sediment age on the As content of aquifer sediments in the northern Hetao Basin of Inner Mongolia.Based on optically stimulated luminescence(OSL)and 14C dating and detrital zircon U-Pb,As content,and lithological analyses of a 400 m core,we reconstructed As changes over the last 160 ka.Our results show clay deposited in a paleo-lake during the Gonghe movement period in the late Pleistocene(∼100 ka B.P.)is enriched in As(31.8μg/g)due to significant provenance contributions of the As-bearing Langshan Group under tectonic uplift and mountain erosion.In contrast,clay deposited in the middle Pleistocene(∼160 ka B.P.)has lower As content(7.3μg/g)due to the Yellow River as the primary provenance.Accordingly,the provenance of basin As forced by tectonic uplift and Yellow River evolution determines the background As of aquifer sediments.After deposition,sediment As content decays over time,with higher decay rates in coarse-grained sands than fine-grained.Overall,both provenance formation and sediment age,representing initial and dynamic states of solid phase As,jointly determine the As content of aquifer sediments.More solid phase As provided by younger sediments from the proximal orogenic provenance and reducing conditions due to frequent river-lake transitions,jointly lead to higher As concentrations in shallow groundwater.The study highlights the potential for using a combined analysis of the tectonic movement-surface processes-environment system to improve understanding of geogenic high As groundwater over global large sedimentary basins in the proximity of young orogenic belts.
基金This study was supported by the National Key Research and Development Program of China(No.2018YFA0703000),the National Natural Science Foundation of China(No.31870957),the Fundamental Research Fundamental Funds for the Central Universities(DUT22LAB601),Guangdong Provincial Basic and Applied Basic Research(No.2019A1515110415),and the Shenzhen Basic Research Program general project(JCYJ20190808152211686 and JCYJ20190808120217133).
文摘Conventional manufacturing techniques to fabricate microfluidic chips,such as soft lithography and hot embossing process,have limitations that include difficulty in preparing multiple-layered structures,cost-and labor-consuming fabrication process,and low productivity.Digital light processing(DLP)technology has recently emerged as a costefficient microfabrication approach for the 3D printing of microfluidic chips;however,the fabrication resolution for microchannels is still limited to sub-100 microns at best.Here,we developed an innovative DLP printing strategy for high resolution and scalable microchannel fabrication by dosing-and zoning-controlled vat photopolymerization(DZC-VPP).Specifically,we proposed a modified mathematical model to precisely predict the accumulated UV irradiance for resin photopolymerization,thereby providing guidance for the fabrication of microchannels with enhanced resolution.By fine-tuning the printing parameters,including optical irradiance,exposure time,projection region,and step distance,we can precisely tailor the penetration irradiance stemming from the photopolymerization of the neighboring resin layers,thereby preventing channel blockage due to UV overexposure or compromised bonding stability owing to insufficient resin curing.Remarkably,this strategy can allow the preparation of microchannels with cross-sectional dimensions of 20μm×20μm using a commercial printer with a pixel size of 10μm×10μm;this is significantly higher resolution than previous reports.In addition,this method can enable the scalable and biocompatible fabrication of microfluidic drop-maker units that can be used for cell encapsulation.In general,the current DZC-VPP method can enable major advances in precise and scalable microchannel fabrication and represents a significant step forward for widespread applications of microfluidics-based techniques in biomedical fields.
基金the National Key Research and Development Program of China (Grant No. 2017YFB1201005)the National Natural Science Foundation of China (Grant Nos. 51572169 and 51672175)the Shanghai Science and Technology Committee (Grant Nos. 17ZR1441400 and 18JC1410500).
文摘Biocompatible, small-sized but well-dispersed gold nanoparticles (Au NPs) remain a major challenge for their synthesis. Here a convenient solution impregnation technique is developed to prepare such Au NPs under the regulation of degummed silk fibroin fibers (SFFs) extracted from Bombyx mori cocoons. SFFs play multiple roles in the formation of Au NPs such as reactive substrate to capture AuCl4^- ions by the chelation of -C = 0, reducing agent for Au(0) by the reduction of -OH , and modifiers to render biocompatible Au NPs by some functional groups and biomolecules. The as-prepared Au NPs with a size of 7-10 nm are embedded in the solid SFF substrate, and can disperse well in the liquid system by the disintegration of SFFs into silk fibroin (SF) in a certain CaCl2 solution. The biocompatible Au NPs exhibit uniform small size and distribute stably in both solid and solution states, which have distinctive properties and functional advantages, and bring great convenience to their storage and transportation.
文摘BACKGROUND: Hutchinson-Gilford progeria syndrome (HGPS) is a devastating premature aging disorder. It arises from a single point mutation in the LMNA gene. This mutation stimulates an aberrant splicing event and produces progerin, an isoform of the lamin A protein. Accumulation of progerin disrupts numerous physiological pathways and induces defects in nuclear architecture, gene expression, histone modification, cell cycle regulation, mitochondrial functionality, genome integrity and much more. OBJECTIVE: Among these phenotypes, genomic instability is tightly associated with physiological aging and considered a main contributor to the premature aging phenotypes. However, our understanding of the underlying molecular mechanisms of progerin-caused genome instability is far from clear. RESULTS AND CONCLUSION: In this review, we summarize some of the recent findings and discuss potential mechanisms through which, progerin affects DNA damage repair and leads to genome integrity.