With the increasing use of humanoid robots in several sectors of industrial automation and manufacturing, navigation and path planning of humanoids has emerged as one of the most promising area of research. In this pa...With the increasing use of humanoid robots in several sectors of industrial automation and manufacturing, navigation and path planning of humanoids has emerged as one of the most promising area of research. In this paper, a navigational controller has been developed for a humanoid by using fuzzy logic as an intelligent algorithm for avoiding the obstacles present in the environment and reach the desired target position safely. Here, the controller has been designed by careful consideration of the navigational parameters by the help of fuzzy rules. The sensory information regarding obstacle distances and bearing angle towards the target are considered as inputs to the controller and necessary velocities for avoiding the obstacles are obtained as outputs. The working of the controller has been tested on a NAO humanoid robot in V-REP simulation platform. To validate the simulation results, an experimental platform has been designed under laboratory conditions, and experimental analysis has been performed.Finally, the results obtained from both the environments are compared against each other with a good agreement between them.展开更多
Fused deposition modeling (FDM) is an additive manufacturing technique used to fabricate intricate parts in 3D, within the shortest possible time without using tools, dies, fixtures, or human intervention. This arti...Fused deposition modeling (FDM) is an additive manufacturing technique used to fabricate intricate parts in 3D, within the shortest possible time without using tools, dies, fixtures, or human intervention. This article empiri- cally reports the effects of the process parameters, i.e., the layer thickness, raster angle, raster width, air gap, part orientation, and their interactions on the accuracy of the length, width, and thicknes, of acrylonitrile-butadiene- styrene (ABSP 400) parts fabricated using the FDM tech- nique. It was found that contraction prevailed along the directions of the length and width, whereas the thickness increased from the desired value of the fabricated part. Optimum parameter settings to minimize the responses, such as the change in length, width, and thickness of the test specimen, have been determined using Taguchi's parameter design. Because Taguchi's philosophy fails to obtain uniform optimal factor settings for each response, in this study, a fuzzy inference system combined with the Taguchi philosophy has been adopted to generate a single response from three responses, to reach the specific target values with the overall optimum factor level settings. Further, Taguchi and artificial neural network predictive models are also presented in this study for an accuracy evaluation within the dimensions of the FDM fabricated parts, subjected to various operating conditions. The pre- dicted values obtained from both models are in good agreement with the values from the experiment data, with mean absolute percentage errors of 3.16 and 0.15, respectively. Finally, the confirmatory test results showed an improvement in the multi-response performance index of 0.454 when using the optimal FDM parameters over the initial values.展开更多
The importance of rapid tooling (RT) and additive manufacturing (AM) appears to be indispensable for boosting the process of manufacturing and expanding the horizon of production technology worldwide. This concept dra...The importance of rapid tooling (RT) and additive manufacturing (AM) appears to be indispensable for boosting the process of manufacturing and expanding the horizon of production technology worldwide. This concept draws the attention of numerous scholars to arrive at a conclusive theory for the widespread utilization of RT. This study attempts to determine the viability and performance of an RT electrode in the field of electro discharge machining (EDM). The electrode prototype is made using an acrylonitrile butadiene styrene (ABS) plastic by fused deposition modeling (FDM), an AM technique, electroplated with copper of desired thickness, and used in die sinking EDM of D2 steel. The scanning electron microscope analysis of the electroplated samples confirms that it is possible to obtain the desired thickness of the metal by electroplating on any electrically conductive surfaces. In the present work, an experimental study is performed for examining the electroplated copper thickness of the plastic EDM electrode and its performances. It is found that the electroplated ABS plastic EDM RT electrode successfully performs the machining operation of D2 steel, and the results are comparable with a solid electrode. The study reveals that the RT electrode can be regarded as a viable tool for rough cutting or semi-finishing cut EDM functions. The experimental results are thoroughly discussed, examined, analyzed, and evaluated for the purpose of developing the appropriate form of the concept.展开更多
文摘With the increasing use of humanoid robots in several sectors of industrial automation and manufacturing, navigation and path planning of humanoids has emerged as one of the most promising area of research. In this paper, a navigational controller has been developed for a humanoid by using fuzzy logic as an intelligent algorithm for avoiding the obstacles present in the environment and reach the desired target position safely. Here, the controller has been designed by careful consideration of the navigational parameters by the help of fuzzy rules. The sensory information regarding obstacle distances and bearing angle towards the target are considered as inputs to the controller and necessary velocities for avoiding the obstacles are obtained as outputs. The working of the controller has been tested on a NAO humanoid robot in V-REP simulation platform. To validate the simulation results, an experimental platform has been designed under laboratory conditions, and experimental analysis has been performed.Finally, the results obtained from both the environments are compared against each other with a good agreement between them.
文摘Fused deposition modeling (FDM) is an additive manufacturing technique used to fabricate intricate parts in 3D, within the shortest possible time without using tools, dies, fixtures, or human intervention. This article empiri- cally reports the effects of the process parameters, i.e., the layer thickness, raster angle, raster width, air gap, part orientation, and their interactions on the accuracy of the length, width, and thicknes, of acrylonitrile-butadiene- styrene (ABSP 400) parts fabricated using the FDM tech- nique. It was found that contraction prevailed along the directions of the length and width, whereas the thickness increased from the desired value of the fabricated part. Optimum parameter settings to minimize the responses, such as the change in length, width, and thickness of the test specimen, have been determined using Taguchi's parameter design. Because Taguchi's philosophy fails to obtain uniform optimal factor settings for each response, in this study, a fuzzy inference system combined with the Taguchi philosophy has been adopted to generate a single response from three responses, to reach the specific target values with the overall optimum factor level settings. Further, Taguchi and artificial neural network predictive models are also presented in this study for an accuracy evaluation within the dimensions of the FDM fabricated parts, subjected to various operating conditions. The pre- dicted values obtained from both models are in good agreement with the values from the experiment data, with mean absolute percentage errors of 3.16 and 0.15, respectively. Finally, the confirmatory test results showed an improvement in the multi-response performance index of 0.454 when using the optimal FDM parameters over the initial values.
文摘The importance of rapid tooling (RT) and additive manufacturing (AM) appears to be indispensable for boosting the process of manufacturing and expanding the horizon of production technology worldwide. This concept draws the attention of numerous scholars to arrive at a conclusive theory for the widespread utilization of RT. This study attempts to determine the viability and performance of an RT electrode in the field of electro discharge machining (EDM). The electrode prototype is made using an acrylonitrile butadiene styrene (ABS) plastic by fused deposition modeling (FDM), an AM technique, electroplated with copper of desired thickness, and used in die sinking EDM of D2 steel. The scanning electron microscope analysis of the electroplated samples confirms that it is possible to obtain the desired thickness of the metal by electroplating on any electrically conductive surfaces. In the present work, an experimental study is performed for examining the electroplated copper thickness of the plastic EDM electrode and its performances. It is found that the electroplated ABS plastic EDM RT electrode successfully performs the machining operation of D2 steel, and the results are comparable with a solid electrode. The study reveals that the RT electrode can be regarded as a viable tool for rough cutting or semi-finishing cut EDM functions. The experimental results are thoroughly discussed, examined, analyzed, and evaluated for the purpose of developing the appropriate form of the concept.