The attachment of the DC arc on the anode is usually affected by surface morphology such as protrusions due to ablation or melting deformation.A three-dimensional thermodynamic and chemical non-equilibrium model is us...The attachment of the DC arc on the anode is usually affected by surface morphology such as protrusions due to ablation or melting deformation.A three-dimensional thermodynamic and chemical non-equilibrium model is used to numerically simulate the effect of artificially assumed surface protrusions on the arc anode attachment.The numerical simulation results show that the arc deflects toward the protrusions on the anode and attaches to them in a constricted mode,resulting in an increase in the temperature of the arc attachment region.The analysis shows that the presence of protrusion on the anode surface changes the electric field distribution,intensifies the degree of thermodynamic and chemical non-equilibrium in its vicinity,further influences the chemical kinetic process of the plasma around it,which is the main reason for the deflection of the arc toward the protrusions and the arc anode attachment in a constricted mode.In order to verify the numerical simulation results,verification experiments are also performed using similar size scale anode protrusion,and the results showed that the presence of protrusion can indeed cause the deflection of the arc and even cause the ablation of the protrusion.展开更多
Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating ...Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.展开更多
基金supported by National Natural Science Foundation of China(Nos.11735004 and 12005010)。
文摘The attachment of the DC arc on the anode is usually affected by surface morphology such as protrusions due to ablation or melting deformation.A three-dimensional thermodynamic and chemical non-equilibrium model is used to numerically simulate the effect of artificially assumed surface protrusions on the arc anode attachment.The numerical simulation results show that the arc deflects toward the protrusions on the anode and attaches to them in a constricted mode,resulting in an increase in the temperature of the arc attachment region.The analysis shows that the presence of protrusion on the anode surface changes the electric field distribution,intensifies the degree of thermodynamic and chemical non-equilibrium in its vicinity,further influences the chemical kinetic process of the plasma around it,which is the main reason for the deflection of the arc toward the protrusions and the arc anode attachment in a constricted mode.In order to verify the numerical simulation results,verification experiments are also performed using similar size scale anode protrusion,and the results showed that the presence of protrusion can indeed cause the deflection of the arc and even cause the ablation of the protrusion.
基金supported by the National Natural Science Foundation of China(Nos.11575273 and 11475239)
文摘Pure nitrogen gas was heated with direct current arc, at input powers from several hundred Watt to over 5 kW, and then injected through a nozzle into a chamber at 1 or 10 Pa pressure, with the purpose of accelerating the gas to very high speed around 7 km/s. Various structures of the arc generator and gas expansion nozzle were examined. Results show that bypass exhausting of the boundary layer before it enters the nozzle divergent section can greatly increase flow speed of the jet, thus it might be possible to use nitrogen as a working gas in high speed gas dynamic test facilities.