This paper presents a compact Multiple Input Multiple Output(MIMO)antenna with WLAN band notch for Ultra-Wideband(UWB)applications.The antenna is designed on 0.8mmthick low-cost FR-4 substrate having a compact size of...This paper presents a compact Multiple Input Multiple Output(MIMO)antenna with WLAN band notch for Ultra-Wideband(UWB)applications.The antenna is designed on 0.8mmthick low-cost FR-4 substrate having a compact size of 22mm×30 mm.The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer.The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure.The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports.A slot is etched in the radiating patch for WLAN band notch.The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz.The results show that the proposed antenna has a very good impedance bandwidth of|S11|<−10 dB within the frequency band from 3.1–14 GHz.A low mutual coupling of less than−23 dB is achieved within the entire UWB band.Furthermore,the antenna has a peak gain of 5.8 dB,low ECC<0.002 and high Diversity Gain(DG>9.98).展开更多
Rogowski coils(RCs)are widely used to measure power or high frequency currents based on their design.In this paper,two types of RCs that are circular(traditional)and cylindrical shapes wound using wire covered by varn...Rogowski coils(RCs)are widely used to measure power or high frequency currents based on their design.In this paper,two types of RCs that are circular(traditional)and cylindrical shapes wound using wire covered by varnish are constructed.This construction is carried out to be suitable for monitoring the discharge current of the surge arrester installed in the distribution system.Concerning high frequency RC modeling for both types considering transfer function is introduced.Self-integrating for both types is attained.Therefore,the experimental tests using function generator for both coils are carried out to identify the parameters of the transfer function representing the introduced model.The measured signals for current and induced voltages are denoised for the parameter identification process.The denoised process is achieved using the MATLAB code‘wdenoise’while the parameters are estimated using the system identification toolbox.Verification of the proposed model is achieved using experimental results for the two coils.The sensitivity of the two coils is investigated based on the induced output voltage.The application concerning the two coils for monitoring the discharge current of the surge arrester is done.The results confirm the accuracy of the introduced RC model,as well as the performance of the cylindrical shape,is better than the traditional one.The simulation is carried out using MATLAB and ATPDraw programs.展开更多
This paper proposes spread prediction of novel corona virus outbreak using different compartmental models and artificial intelligence(AI)methods.Real data for several months is collected from the Ministry of Health(MO...This paper proposes spread prediction of novel corona virus outbreak using different compartmental models and artificial intelligence(AI)methods.Real data for several months is collected from the Ministry of Health(MOH)website,Kingdom of Saudi Arabia and two compartmental models,namely SIR(susceptible,infectious,recovered)and SEIRD(susceptible,exposed,infectious,recovered,dead)are utilized to best fit the data.AI methods are well suited for short-and long-term stochastic forecasts.Keeping in view the inherent advantages of AI methods,adaptive neuro-fuzzy inference system(ANFIS)models are trained using the collected data to replicate the dynamic behavior of the COVID-19 spread in Kingdom of Saudi Arabia.The prediction comparison for COVID-19 spread is made between the compartmental and ANFIS models for both short-and long-term forecasts of the experimental data.From the presented results,ANFIS-based models show superior performance as compared to compartmental models.展开更多
基金The authors would like to acknowledge the support from Taif University Researchers Supporting Project Number (TURSP-2020/264),Taif University,。
文摘This paper presents a compact Multiple Input Multiple Output(MIMO)antenna with WLAN band notch for Ultra-Wideband(UWB)applications.The antenna is designed on 0.8mmthick low-cost FR-4 substrate having a compact size of 22mm×30 mm.The proposed antenna comprises of two monopole patches on the top layer of substrate while having a shared ground on its bottom layer.The mutual coupling between adjacent patches has been reduced by using a novel stub with shared ground structure.The stub consists of complementary rectangular slots that disturb the surface current direction and thus result in reducing mutual coupling between two ports.A slot is etched in the radiating patch for WLAN band notch.The slot is used to suppress frequencies ranging from 5.1 to 5.9 GHz.The results show that the proposed antenna has a very good impedance bandwidth of|S11|<−10 dB within the frequency band from 3.1–14 GHz.A low mutual coupling of less than−23 dB is achieved within the entire UWB band.Furthermore,the antenna has a peak gain of 5.8 dB,low ECC<0.002 and high Diversity Gain(DG>9.98).
基金funded from Taif University Researchers Supporting Project number(TURSP-2020/264),Taif University,Taif,Saudi Arabia.
文摘Rogowski coils(RCs)are widely used to measure power or high frequency currents based on their design.In this paper,two types of RCs that are circular(traditional)and cylindrical shapes wound using wire covered by varnish are constructed.This construction is carried out to be suitable for monitoring the discharge current of the surge arrester installed in the distribution system.Concerning high frequency RC modeling for both types considering transfer function is introduced.Self-integrating for both types is attained.Therefore,the experimental tests using function generator for both coils are carried out to identify the parameters of the transfer function representing the introduced model.The measured signals for current and induced voltages are denoised for the parameter identification process.The denoised process is achieved using the MATLAB code‘wdenoise’while the parameters are estimated using the system identification toolbox.Verification of the proposed model is achieved using experimental results for the two coils.The sensitivity of the two coils is investigated based on the induced output voltage.The application concerning the two coils for monitoring the discharge current of the surge arrester is done.The results confirm the accuracy of the introduced RC model,as well as the performance of the cylindrical shape,is better than the traditional one.The simulation is carried out using MATLAB and ATPDraw programs.
基金This work was supported by the Research Groups Program funded by Deanship of Scientific Research,Taif University,Ministry of Education,Saudi Arabia,Under Grant 1-441-55.
文摘This paper proposes spread prediction of novel corona virus outbreak using different compartmental models and artificial intelligence(AI)methods.Real data for several months is collected from the Ministry of Health(MOH)website,Kingdom of Saudi Arabia and two compartmental models,namely SIR(susceptible,infectious,recovered)and SEIRD(susceptible,exposed,infectious,recovered,dead)are utilized to best fit the data.AI methods are well suited for short-and long-term stochastic forecasts.Keeping in view the inherent advantages of AI methods,adaptive neuro-fuzzy inference system(ANFIS)models are trained using the collected data to replicate the dynamic behavior of the COVID-19 spread in Kingdom of Saudi Arabia.The prediction comparison for COVID-19 spread is made between the compartmental and ANFIS models for both short-and long-term forecasts of the experimental data.From the presented results,ANFIS-based models show superior performance as compared to compartmental models.