Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat(Triticum aestivum.L.,BBAADD)is hypothesized to increase its adaptability and/or plasticity.However,the...Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat(Triticum aestivum.L.,BBAADD)is hypothesized to increase its adaptability and/or plasticity.However,the molecular basis of expression divergence remains unclear.Squamosa promoter-binding protein-like(SPL)transcription factors are critical for a wide array of biological processes.In this study,we constructed expression regulatory networks by combining DAP-seq for 40 SPLs,ATACseq,and RNA-seq.Our findings indicate that a group of low-affinity SPL binding regions(SBRs)were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif.The SBRs including the low-affinity ones are evolutionarily conserved,enriched GWAS signals related to important agricultural traits.However,those SBRs are highly diversified among the cis-regulatory regions(CREs)of syntenic genes,with less than 8%SBRs coexisting in triad genes,suggesting that CRE variations are critical for subgenome differentiations.Knocking out of Ta SPL7A/B/D and Ta SPL15A/B/D subfamily further proved that both high-and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes.Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.展开更多
Crop plant architecture is an important agronomic trait that contributes greatly to crop yield.Tiller angle is one of the most critical components that determine crop plant architecture,which in turn substantially af-...Crop plant architecture is an important agronomic trait that contributes greatly to crop yield.Tiller angle is one of the most critical components that determine crop plant architecture,which in turn substantially af-fects grain yield mainly owing to its large influence on plant density.Gravity is a fundamental physical force that acts on all organisms on earth.Plant organs sense gravity to control their growth orientation,including tiller angle in rice(Oryza sativa).This review summarizes recent research advances made using rice tiller angle as a research model,providing insights into domestication of rice tiller angle,genetic regulation of rice tiller angle,and shoot gravitropism.Finally,we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species,thereby contributing to agricultural production in the future.展开更多
Grain number per panicle(GNP)is an important agronomic trait that contributes to rice grain yield.Despite its importance in rice breeding,the molecular mechanism underlying GNP regulation remains largely unknown.In th...Grain number per panicle(GNP)is an important agronomic trait that contributes to rice grain yield.Despite its importance in rice breeding,the molecular mechanism underlying GNP regulation remains largely unknown.In this study,we identified a previously unrecognized regulatory gene that controls GNP in rice,Oryza sativa REPRODUCTIVE MERISTEM 20(OsREM20),which encodes a B3 domain transcription factor.Through genetic analysis and transgenic validation we found that genetic variation in the CArG box-containing inverted repeat(IR)sequence of the OsREM20 promoter alters its expression level and contributes to GNP variation among rice varieties.Furthermore,we revealed that the IR sequence regulates OsREM20 expression by affecting the direct binding of OsMADS34 to the CArG box within the IR sequence.Interestingly,the divergent pOsREM20IR and pOsREM20ΔIR alleles were found to originate from different Oryza rufipogon accessions,and were independently inherited into the japonica and indica subspecies,respectively,during domestication.Importantly,we demonstrated that IR sequence variations in the OsREM20 promoter can be utilized for germplasm improvement through either genome editing or traditional breeding.Taken together,our study characterizes novel genetic variations responsible for GNP diversity in rice,reveals the underlying molecular mechanism in the regulation of agronomically important gene expression,and provides a promising strategy for improving rice production by manipulating the cis-regulatory element-containing IR sequence.展开更多
N-terminal acetylation is one of the most common protein modifications in eukaryotes,and approximately 40%of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A(NatA)in a co-...N-terminal acetylation is one of the most common protein modifications in eukaryotes,and approximately 40%of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A(NatA)in a co-translational manner.However,the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear.Here,we identify Huntingtin Yeast partner K(HYPK),an evolutionarily conserved chaperone-like protein,as a positive regulator of NatA activity in rice.We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses,attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover.Furthermore,we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation,probably through the Ac/N-degron pathway,which could be induced by abiotic stresses.Taken together,our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover,which are essential for maintaining adaptive phenotypic plasticity in rice.展开更多
基金supported by the Central Publicinterest Scientific Institution Basic Research Found(S2022ZD02)the Excellent Young Scientists Fund(Overseas)of National Natural Science Foundation of China+2 种基金the Fundamental Research Funds from the Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(S2020YC07,S2021YC03)the Major Basic Research Program of Shandong Natural Science Foundation(ZR2019ZD15)the Top Talents Program“One Case One Discussion(Yishiyiyi)”of Shandong Province,China。
文摘Expression divergence caused by genetic variation and crosstalks among subgenomes of the allohexaploid bread wheat(Triticum aestivum.L.,BBAADD)is hypothesized to increase its adaptability and/or plasticity.However,the molecular basis of expression divergence remains unclear.Squamosa promoter-binding protein-like(SPL)transcription factors are critical for a wide array of biological processes.In this study,we constructed expression regulatory networks by combining DAP-seq for 40 SPLs,ATACseq,and RNA-seq.Our findings indicate that a group of low-affinity SPL binding regions(SBRs)were targeted by diverse SPLs and caused different sequence preferences around the core GTAC motif.The SBRs including the low-affinity ones are evolutionarily conserved,enriched GWAS signals related to important agricultural traits.However,those SBRs are highly diversified among the cis-regulatory regions(CREs)of syntenic genes,with less than 8%SBRs coexisting in triad genes,suggesting that CRE variations are critical for subgenome differentiations.Knocking out of Ta SPL7A/B/D and Ta SPL15A/B/D subfamily further proved that both high-and low-affinity SBRs played critical roles in the differential expression of genes regulating tiller number and spike sizes.Our results have provided baseline data for downstream networks of SPLs and wheat improvements and revealed that CRE variations are critical sources for subgenome divergence in the allohexaploid wheat.
基金the National Natural Science Foundation of China(91935301,31930006)the Strategic Priority Research Program“Molecular Mechanism of Plant Growth and Development”of Chinese Academy of Sciences(XDB27010100)the Top Talents Program“One Case One Discussion(Yishiyiyi)”of Shandong Province,China.
文摘Crop plant architecture is an important agronomic trait that contributes greatly to crop yield.Tiller angle is one of the most critical components that determine crop plant architecture,which in turn substantially af-fects grain yield mainly owing to its large influence on plant density.Gravity is a fundamental physical force that acts on all organisms on earth.Plant organs sense gravity to control their growth orientation,including tiller angle in rice(Oryza sativa).This review summarizes recent research advances made using rice tiller angle as a research model,providing insights into domestication of rice tiller angle,genetic regulation of rice tiller angle,and shoot gravitropism.Finally,we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species,thereby contributing to agricultural production in the future.
基金supported by grants from the National Natural Science Foundation of China(91935301,31930006,31601276)the National Key Research and Development Program of China(2016YFD0100403)+1 种基金the Strategic Priority Research Program"Molecular Mechanism of Plant Growth and Development"of CAS(XDB27010100)the Top Talents Program"One Case One Discussion(Yishiyiyi)"of Shandong Province,China.
文摘Grain number per panicle(GNP)is an important agronomic trait that contributes to rice grain yield.Despite its importance in rice breeding,the molecular mechanism underlying GNP regulation remains largely unknown.In this study,we identified a previously unrecognized regulatory gene that controls GNP in rice,Oryza sativa REPRODUCTIVE MERISTEM 20(OsREM20),which encodes a B3 domain transcription factor.Through genetic analysis and transgenic validation we found that genetic variation in the CArG box-containing inverted repeat(IR)sequence of the OsREM20 promoter alters its expression level and contributes to GNP variation among rice varieties.Furthermore,we revealed that the IR sequence regulates OsREM20 expression by affecting the direct binding of OsMADS34 to the CArG box within the IR sequence.Interestingly,the divergent pOsREM20IR and pOsREM20ΔIR alleles were found to originate from different Oryza rufipogon accessions,and were independently inherited into the japonica and indica subspecies,respectively,during domestication.Importantly,we demonstrated that IR sequence variations in the OsREM20 promoter can be utilized for germplasm improvement through either genome editing or traditional breeding.Taken together,our study characterizes novel genetic variations responsible for GNP diversity in rice,reveals the underlying molecular mechanism in the regulation of agronomically important gene expression,and provides a promising strategy for improving rice production by manipulating the cis-regulatory element-containing IR sequence.
基金supported by grants from the National Natural Science Foundation of China(91935301,91635301,31601276)the Strategic Priority Research Program“Molecular Mechanism of Plant Growth and Development”of CAS(XDB27010100)+2 种基金the Top Talents Program“One Case One Discussion(Yishiyiyi)”of Shandong Province,ChinaThe Deutsche Forschungsgemeinschaft funded research at Heidelberg University via the Collaborative Research Center 1036(Project-ID:201348542-SFB 1036)individual research grants(WI 3560/4-1,Project-ID:353859218 and WI 3560/7-1,Project-ID:496871662).
文摘N-terminal acetylation is one of the most common protein modifications in eukaryotes,and approximately 40%of human and plant proteomes are acetylated by ribosome-associated N-terminal acetyltransferase A(NatA)in a co-translational manner.However,the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear.Here,we identify Huntingtin Yeast partner K(HYPK),an evolutionarily conserved chaperone-like protein,as a positive regulator of NatA activity in rice.We found that loss of OsHYPK function leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses,attributable to perturbation of the N-terminal acetylome and accelerated global protein turnover.Furthermore,we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation,probably through the Ac/N-degron pathway,which could be induced by abiotic stresses.Taken together,our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover,which are essential for maintaining adaptive phenotypic plasticity in rice.