We review several recent theoretical and experimental results in the study of exciton condensates. This includes the present experimental advances in the study of exciton condensates both using layers and coupled bila...We review several recent theoretical and experimental results in the study of exciton condensates. This includes the present experimental advances in the study of exciton condensates both using layers and coupled bilayers. We will shortly illustrate the different phases of exciton condensates. We focus especially on the Bardeen-Cooper-Schrieffer-like phase and illustrate the similarities to superconductors. Afterwards, we want to illustrate several recent advances and proposals for measuring the different phases of superconductors. In the remainder of this short review, we will provide an outlook for the possibilities and complications for future technical applications of exciton condensates.展开更多
We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. Wh...We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. While the dissipation when coupling to metallic leads to uninteresting states for the Majorana fermions, we show that coupling the Majorana fermions to local phonons allows to generate arbitrary dissipations and therefore universal quantum operations on a single QuBit that can be enhanced by additional two-QuBit operations.展开更多
We review several recent theoretical and experimental results in the study of superconductor hybrids. This includes the recent experimental advances in the study of superconducting beamsplitters as well as more advanc...We review several recent theoretical and experimental results in the study of superconductor hybrids. This includes the recent experimental advances in the study of superconducting beamsplitters as well as more advanced superconductor hybrid systems including ferromagnets or Majorana fermions. In the same manner, theoretical studies have revealed that such superconductor hybrid systems pave the way towards electronic generation and detection of entanglement as well as possible use cases in quantum computing. We will review the aspects in detail and illustrate the possible next steps to be taken.展开更多
We consider the solution of matching problems with a convex cost function via a network flow algorithm. We review the general mapping between matching problems and flow problems on skew symmetric networks and revisit ...We consider the solution of matching problems with a convex cost function via a network flow algorithm. We review the general mapping between matching problems and flow problems on skew symmetric networks and revisit several results on optimality of network flows. We use these results to derive a balanced capacity scaling algorithm for matching problems with a linear cost function. The latter is later generalized to a balanced capacity scaling algorithm also for a convex cost function. We prove the correctness and discuss the complexity of our solution.展开更多
In this paper, we discuss the full counting statistics of superconducting quantum dot contacts. We discuss the effects both of phonon and onsite electronic interaction focusing on the experimentally most relevant case...In this paper, we discuss the full counting statistics of superconducting quantum dot contacts. We discuss the effects both of phonon and onsite electronic interaction focusing on the experimentally most relevant case of strong onsite electronic interactions. We find that in general, the Josephson effect and multiple Andreev reflections in these systems are strongly suppressed due to the onsite interaction. However, in case resonant phonons are found, the effect of the onsite interaction can be overcome.展开更多
We analyse the proximity effect in hybrid nanoscale junctions involving superconducting leads. We develop a general framework for the analysis of the proximity effect using the same theoretical methods typically emplo...We analyse the proximity effect in hybrid nanoscale junctions involving superconducting leads. We develop a general framework for the analysis of the proximity effect using the same theoretical methods typically employed for the analysis of conductance properties. We apply our method to a normal-superconductor tunnel contact and compare our results to previous results.展开更多
We have coupled an upright HG mode into a fiber-optic waveguide and used the application of stress to generate a Laguerre-Gaussian laser mode. We have generalized previous results by McGloin et al. by using a polarize...We have coupled an upright HG mode into a fiber-optic waveguide and used the application of stress to generate a Laguerre-Gaussian laser mode. We have generalized previous results by McGloin et al. by using a polarized input beam, a true 3-mode fiber and by applying the stress on a stripped piece of the optical waveguide. These generalizations are necessary in order to perform quantum information experiments and obtain reliable information on the stress imposed on the optical fiber.展开更多
文摘We review several recent theoretical and experimental results in the study of exciton condensates. This includes the present experimental advances in the study of exciton condensates both using layers and coupled bilayers. We will shortly illustrate the different phases of exciton condensates. We focus especially on the Bardeen-Cooper-Schrieffer-like phase and illustrate the similarities to superconductors. Afterwards, we want to illustrate several recent advances and proposals for measuring the different phases of superconductors. In the remainder of this short review, we will provide an outlook for the possibilities and complications for future technical applications of exciton condensates.
文摘We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. While the dissipation when coupling to metallic leads to uninteresting states for the Majorana fermions, we show that coupling the Majorana fermions to local phonons allows to generate arbitrary dissipations and therefore universal quantum operations on a single QuBit that can be enhanced by additional two-QuBit operations.
文摘We review several recent theoretical and experimental results in the study of superconductor hybrids. This includes the recent experimental advances in the study of superconducting beamsplitters as well as more advanced superconductor hybrid systems including ferromagnets or Majorana fermions. In the same manner, theoretical studies have revealed that such superconductor hybrid systems pave the way towards electronic generation and detection of entanglement as well as possible use cases in quantum computing. We will review the aspects in detail and illustrate the possible next steps to be taken.
文摘We consider the solution of matching problems with a convex cost function via a network flow algorithm. We review the general mapping between matching problems and flow problems on skew symmetric networks and revisit several results on optimality of network flows. We use these results to derive a balanced capacity scaling algorithm for matching problems with a linear cost function. The latter is later generalized to a balanced capacity scaling algorithm also for a convex cost function. We prove the correctness and discuss the complexity of our solution.
文摘In this paper, we discuss the full counting statistics of superconducting quantum dot contacts. We discuss the effects both of phonon and onsite electronic interaction focusing on the experimentally most relevant case of strong onsite electronic interactions. We find that in general, the Josephson effect and multiple Andreev reflections in these systems are strongly suppressed due to the onsite interaction. However, in case resonant phonons are found, the effect of the onsite interaction can be overcome.
文摘We analyse the proximity effect in hybrid nanoscale junctions involving superconducting leads. We develop a general framework for the analysis of the proximity effect using the same theoretical methods typically employed for the analysis of conductance properties. We apply our method to a normal-superconductor tunnel contact and compare our results to previous results.
文摘We have coupled an upright HG mode into a fiber-optic waveguide and used the application of stress to generate a Laguerre-Gaussian laser mode. We have generalized previous results by McGloin et al. by using a polarized input beam, a true 3-mode fiber and by applying the stress on a stripped piece of the optical waveguide. These generalizations are necessary in order to perform quantum information experiments and obtain reliable information on the stress imposed on the optical fiber.