期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Dynamic mechanical characteristics of deep Jinping marble in complex stress environments
1
作者 Chendi Lou heping xie +6 位作者 Ru Zhang Hai Ren Hao Luo Kun Xiao Yuan Peng Qiang Tan Li Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期630-644,共15页
To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ... To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth. 展开更多
关键词 Rock mechanics Split-Hopkinson pressure bar Coupled static‒dynamic loading Different depths Holmquist-Johnson-Cook(HJC)model
下载PDF
Preliminary research and scheme design of deep underground in situ geo-information detection experiment for Geology in Time
2
作者 heping xie Ru Zhang +13 位作者 Zetian Zhang Yinshuang Ai Jianhui Deng Yun Chen Yong Zhou Mingchuan Li Liqiang Liu Mingzhong Gao Zeqian Yang Weiqiang Ling Heng Gao Qijun Hao Kun Xiao Chendi Lou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L... The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering. 展开更多
关键词 Deep underground Geology in Time China Jinping Underground Laboratory In situ detection
下载PDF
Size effect of fracture characteristics for anisotropic quasi-brittle geomaterials 被引量:3
3
作者 Cunbao Li Dongchao Yang +2 位作者 heping xie Li Ren Jun Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期201-213,共13页
Understanding the size effect exhibited by the fracture mechanism of anisotropic geomaterials is important for engineering practice. In this study, the anisotropic features of the nominal strength, apparent fracture t... Understanding the size effect exhibited by the fracture mechanism of anisotropic geomaterials is important for engineering practice. In this study, the anisotropic features of the nominal strength, apparent fracture toughness, effective fracture energy and fracture process zone(FPZ) size of geomaterials were first analyzed by systematic size effect fracture experiments. The results showed that the nominal strength and the apparent fracture toughness decreased with increasing bedding plane inclination angle.The larger the specimen size was, the smaller the nominal strength and the larger the apparent fracture toughness was. When the bedding inclination angle increased from 0° to 90°, the effective fracture energy and the effective FPZ size both first decreased and then increased within two complex variation stages that were bounded by the 45° bedding angle. Regardless of the inherent anisotropy of geomaterials,the nominal strength and apparent fracture toughness can be predicted by the energy-based size effect law, which demonstrates that geomaterials have obvious quasi-brittle characteristics. Theoretical analysis indicated that the true fracture toughness and energy dissipation can be calculated by linear elastic fracture mechanics only when the brittleness number is higher than 10;otherwise, size effect tests should be adopted to determine the fracture parameters. 展开更多
关键词 Size effect Inherent anisotropy Fracture toughness Fracture energy Effective FPZ size Quasi-brittle geomaterials
下载PDF
Design and development of the deep-rock in-situ condition-preserved coring calibration platform 被引量:1
4
作者 Yihang Li heping xie +8 位作者 Ru Zhang Zetian Zhang Zhilong Zhang Heng Gao Wei Huang Jixun Zhang Jiming Gao Xin Ma Ruibing Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1377-1395,共19页
To systematically validate and calibrate the theory and technology of the deep in-situ conditionpreserved coring, the in-situ conditions at different depths should be simulated, and the full-size coring tests should b... To systematically validate and calibrate the theory and technology of the deep in-situ conditionpreserved coring, the in-situ conditions at different depths should be simulated, and the full-size coring tests should be carried out in this simulated environment. Therefore, a deep-rock in-situ conditionpreserved coring calibration platform was designed and developed. The self-tightening sealing structure and the quick-disassembly structure were designed on the basis of an innovative segmented nonuniformdiameter structure, which was a breakthrough from the traditional high-pressure vessel frame and was verified by finite element simulation and actual testing under extreme working conditions, respectively.To simulate the actual deep in-situ environment with a temperature of 150℃ and pressure of 140 MPa for a large Φ450 mm×H1400 mm core, temperature and pressure control systems were designed by coupling, and a pre-embedded high-pressure-resistant temperature sensor was designed. Finally, highprecision assembly automation, complex movement coordination of the coring device with the platform,and rotary dynamic sealing were achieved by utilizing the combination of adaptive cabin body servo control and an adaptive mechanical structure in a limited space, laying a solid foundation for the calibration of in-situ condition-preserved coring. 展开更多
关键词 In-situ condition-preserved coring CALIBRATION Deep Earth science Coring simulation Rotary dynamic seal
下载PDF
Research progress and application of deep in-situ condition preserved coring and testing
5
作者 heping xie Yunqi Hu +14 位作者 Mingzhong Gao Ling Chen Ru Zhang Tao Liu Feng Gao Hongwei Zhou Xiaobo Peng Xiongjun Li Jianbo Zhu Cunbao Li Ruidong Peng Yanan Gao Cong Li Jianan Li Zhiqiang He 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1319-1337,共19页
With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence d... With the depletion of shallow resources,the exploration of deep earth resources has become a global strategy.The study of the different patterns in the physical mechanical properties of rocks at different occurrence depths is the basis for exploring deep into the earth,with the core and premise being the acquisition and testing of deep in-situ core specimens.Based on the original idea of deep in-situ condition preserved coring(ICP-Coring)and testing,combined with theoretical modeling,numerical analysis,test platform development,indoor testing and engineering application,the principles and technologies of deep ICP-Coring are developed.This principle and technology consists of five parts:in-situ pressurepreserved coring(IPP-Coring),in-situ substance-preserved coring(ISP-Coring),in-situ temperaturepreserved coring(ITP-Coring),in-situ light-preserved coring(ILP-Coring),and in-situ moisturepreserved coring(IMP-Coring).The theory and technology of temperature and pressure reconstruction at different occurrence depths and in different environments are proposed,and prototype trial production was completed by following the principle of displacement and tests based on the in-situ reconstructed environment.The notable advances are as follows:(1)Deep in-situ coring system:A pressure-preserved controller with an ultimate bearing capacity greater than 140 MPa,highperformance(temperature-resistant,pressure-resistant,and low thermally conductive)temperaturepreserved materials,an active temperature control system,and high-barrier quality-preserved membrane materials were developed;a deep ICP-Coring capacity calibration platform was independently developed,a deep in-situ coring technology system was developed,and the acquisition of deep in-situ cores was realized.(2)In-situ storage displacement system:Following the dual-circuit hydraulic design idea,a single-drive source push-pull composite grabbing mechanism was designed;the design of the overall structure for the deep in-situ displacement storage system and ultrahigh pressure cabin structure was completed,which could realize docking the coring device and core displacement in the in-situ reconstructed environment.(3)Test analysis system:A noncontact acoustic-electric-magnetic test system was developed under the in-situ reconstructed environment,and the errors between the test results and traditional contact test results were mostly less than 10%;a detachable deep in-situ core true triaxial test system was developed,which could perform loading tests for deep in-situ cores.The relevant technological achievements were successfully applied to the exploration and development of deep resources,such as deep mines,deep-sea natural gas hydrates,and deep oil and gas.The research results provide technical and equipment support for the construction of a theoretical system for deep in-situ rock mechanics,the development of deep earth resources and energy,and the scientific exploration of different layers and occurrence depths(deep and ultradeep)of the Earth. 展开更多
关键词 Deep mining Deep in-situ CORING DISPLACEMENT Test
下载PDF
Numerical analysis on mechanical difference of sandstone under in-situ stress,pore pressure preserved environment at depth
6
作者 Hongwei Zhou Mingyuan Lu +5 位作者 heping xie Wenhao Jia Ruidong Peng Yimeng Wang Bocen Chen Pengfei Jing 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1339-1350,共12页
Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure pres... Deep in-situ rock mechanics considers the influence of the in-situ environment on mechanical properties,differentiating it from traditional rock mechanics.To investigate the effect of in-situ stress,pore pressure preserved environment on the mechanical difference of sandstone,four tests are numerically modeled by COMSOL:conventional triaxial test,conventional pore pressure test,in-situ stress restoration and reconstruction test,and in-situ pore pressure-preserved test(not yet realized in the laboratory).The in-situ stress restoration parameter is introduced to characterize the recovery effect of in-situ stress on elastic modulus and heterogeneous distribution of sandstone at different depths.A random function and nonuniform pore pressure coefficient are employed to describe the non-uniform distribution of pore pressure in the in-situ environment.Numerical results are compared with existing experimental data to validate the models and calibrate the numerical parameters.By extracting mechanical parameters from numerical cores,the stress-strain curves of the four tests under different depths,in-situ stress and pore pressure are compared.The influence of non-uniform pore pressure coefficient and depth on the peak strength of sandstone is analyzed.The results show a strong linear relationship between the in-situ stress restoration parameter and depth,effectively characterizing the enhanced effect of stress restoration and reconstruction methods on the elastic modulus of conventional cores at different depths.The in-situ pore pressurepreserved test exhibits lower peak stress and peak strain compared to the other three tests,and sandstone subjected to non-uniform pore pressure is more prone to plastic damage and failure.Moreover,the influence of non-uniform pore pressure on peak strength gradually diminished with increasing depth. 展开更多
关键词 In-situ pore pressure-preserved ENVIRONMENT Numerical simulation approach Deep in-situ rock mechanics In-situ stress restoration and reconstruction
下载PDF
Study of a low-disturbance pressure-preserving corer and its coring performance in deep coal mining conditions
7
作者 Wei Huang Jianan Li +3 位作者 Zhiqiang Liu Mingqing Yang Zhenxi You heping xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1397-1410,共14页
With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content... With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content,a low-disturbance pressure-preserving corer was developed.The measurement of gas content using this corer was analyzed.The coring test platform was used to complete a coring function test.A pressurized core with a diameter of 50 mm was obtained.The pressure was 0.15 MPa,which was equal to the pressure of the liquid column of the cored layer,indicating that the corer can be successfully used in a mud environment.Next,a pressure test of the corer was conducted.The results showed that under conditions of low pressure(8 MPa)and high pressure(25 MPa),the internal pressure of the corer remained stable for more than 1 h,indicating that the corer has good ability to maintain pressure.Therefore,the corer can be applied at deep coal mine sites.The results of this research can be used to promote the safe exploitation of deep coal mines and the exploitation of methane resources in coalbeds. 展开更多
关键词 Pressure-preserving corer Low-disturbance Coring performance Deep coal mining conditions
下载PDF
Development of a pressure coring system for the investigation of deep underground exploration
8
作者 Da Guo Ling Chen +8 位作者 Zhongya Zhou Dingming Wang Yiwei Zhang Xun Yang Xin Fang Xiaojun Wang heping Lu Lin Dai heping xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1351-1364,共14页
To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyse... To provide a more accurate evaluation of the scale of deep underground resources,a new pressure coring system was carefully developed and its strength and safety of the engineering were verified by theoretical analyses and numerical simulation.The designed pressure coring system can obtain cores with length of 3 m and diameter of 50 mm at 70 MPa.The results of the ball-drop operation experiment demonstrate that differential motion assembly can effectively cut a safety pin by applying a tensile force of 4852 N,and it can lift the core tube through the center pole to complete a series of mechanical actions to seal the pressure.Additionally,by maintaining pressures at 70 MPa for 30 min,the pressure sealing capacity of the system was proven.Furthermore,a core sample with a diameter of 50 mm was obtained through a core drilling experiment and the coring performance of the pressure coring system was verified.This study can not only enrich the existing onshore coring technology but also provide a theoretical guide and design criteria for the development of similar pressure coring systems to meet the demand for deeper underground exploration. 展开更多
关键词 Underground exploration In-situ coring Pressure coring Oil and gas production
下载PDF
Direct measurement and theoretical prediction model of interparticle adhesion force between irregular planetary regolith particles
9
作者 heping xie Qi Wu +3 位作者 Yifei Liu Yachen xie Mingzhong Gao Cunbao Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1425-1436,共12页
Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has b... Interparticle adhesion force has a controlling effect on the physical and mechanical properties of planetary regolith and rocks.The current research on the adhesion force of planetary regolith and rock particles has been primarily based on the assumption of smooth spherical particles to calculate the intergranular adhesion force;this approach lacks consideration for the adhesion force between irregular shaped particles.In our study,an innovative approach was established to directly measure the adhesion force between the arbitrary irregular shaped particles;the probe was modified using simulated lunar soil particles that were a typical representation of planetary regolith.The experimental results showed that for irregular shaped mineral particles,the particle size and mineral composition had no significant influence on the interparticle adhesion force;however,the complex morphology of the contact surface predominantly controlled the adhesion force.As the contact surface roughness increased,the adhesion force gradually decreased,and the rate of decrease gradually slowed;these results were consistent with the change trend predicted via the theoretical models of quantum electrodynamics.Moreover,a theoretical model to predict the adhesion force between the irregular shaped particles was constructed based on Rabinovich’s theory,and the prediction results were correlated with the experimental measurements. 展开更多
关键词 Planetary regolith Adhesion force Particle morphology Prediction model
下载PDF
A novel fractal-statistical scaling model of rocks considering strain rate
10
作者 Changtai Zhou heping xie +2 位作者 Zhihe Wang Tao Zhou Jianbo Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第11期2831-2841,共11页
The scaling-dependent behaviors of rocks are significant to the stability and safe operation of the structures built in or on rock masses for practical engineering.Currently,many size effect models are employed to con... The scaling-dependent behaviors of rocks are significant to the stability and safe operation of the structures built in or on rock masses for practical engineering.Currently,many size effect models are employed to connect laboratory measurements at small scales and engineering applications at large scales.However,limited works consider the strain rate effect.In this study,an fractal-statistical scaling model incorporating strain rate is proposed based on a weakest-link approach,fractal theory and dynamic fracture mechanics.The proposed scaling model consists of 8 model parameters with physical meaning,i.e.rate-dependent parameter,intrinsic material parameter,dynamic strain rate,quasi-static strain rate,quasi-static fracture toughness,micro-crack size,micro-crack intensity and fractal dimension,enabling the proposed scaling model to model the scaling behaviors under different external conditions.Theoretical predictions are consistent with experimental data on red sandstone,proving the reliability and effectiveness of the proposed scaling model.Thus,the scaling behaviors of rocks under dynamic loading conditions can be captured by the proposed fractal-statistical scaling model.The sensitivity analysis indicates that the nominal strength difference becomes more obvious with a higher strain rate,larger fractal dimension,smaller micro-crack size or lower micro-crack intensity.Therefore,the proposed scaling model has the potential to capture the scaling behaviors considering the thermal effect,weathering effect,anisotropic characteristic etc.,as the proposed scaling model incorporated model parameters with physical meaning.The findings of this study are of fundamental importance to understand the scaling behaviors of rock under dynamic loading condition,and thus would facilitate the appropriate design of rock engineering. 展开更多
关键词 Size effect Strain rate Uniaxial compressive strength(UCS) Dynamic fracture mechanics
下载PDF
A graphene-enhanced high-barrier and fast-curing film for deep in situ condition preserved coring in coal seams
11
作者 Dongsheng Yang Zhiyu Zhao +4 位作者 Yifan Wu Liangyu Zhu Jingli Lu Tao Liu heping xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1365-1376,共12页
Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to ... Scientific research on deep in situ resources is highly important to the theory and technology system construction for deep in-situ resource exploitation.To obtain high-condition preserved core samples,it is vital to maintain the original material,humidity and luminous flux information inside the core.Therefore,this study proposes a research and development strategy for a high-toughness and highbarrier sealing film based on the molecular structure design and filler synergistic enhancement via a deep solid-state sealing film using in situ substance preservation(ISP),in situ moisture preservation(IMP)and in situ light preservation(ILP)coring principles.A graphene/epoxy composite sealing film with a high barrier,high strength and high toughness was developed.The oxygen permeability of the film was 0.23 cm^(3)/(m^(2)·d),the water vapor permeability was 1.26 g/(m^(2)·d),and the light transmittance was 0.The tensile strength reached 15.4 MPa,and the toughness was 5242.9 kJ/m^(3).The results from the film substance and moisture preservation performance verification experiments showed that the sealing film had an excellent sealing effect on small molecules,such as water,alkanes and even ions,which further verified that the sealing film greatly contributed to the maintenance and preservation of deep in-situ resource reserves and abundance. 展开更多
关键词 ISP-IMP-ILP-coring Graphene/epoxy resin composites Sealing film
下载PDF
New understandings on initiation and evolution of disasters in deep underground
12
作者 Jianguo Wang heping xie +1 位作者 Chunfai Leung Xiaozhao Li 《Deep Underground Science and Engineering》 2023年第3期205-206,共2页
The editors wish to highlight the articles appearing in this issue.The first article,entitled“New physics of supersonic ruptures”by Boris G.Tarasov,concerns the development of a new theory on the potential occurrenc... The editors wish to highlight the articles appearing in this issue.The first article,entitled“New physics of supersonic ruptures”by Boris G.Tarasov,concerns the development of a new theory on the potential occurrence of ruptures after deep underground earthquakes.Two other articles belong to our first special theme of“Disaster evolution in deep underground.”The final two articles introduce a nonlocal damage fracture phasefield model for rock‐like materials and the gas–liquid displacement in microcleats for mass transfer through gas‐or water‐driven displacement.These five papers indeed explore various aspects of deep underground science and engineering and constitute an integral component of deep underground fundamentals. 展开更多
关键词 UNDERGROUND DISPLACEMENT EVOLUTION
原文传递
A research on excavation compensation theory for large deformation disaster control and a review on the multiphysical-multiscale responses of salt rock for underground gas storage
13
作者 Jianguo Wang heping xie +1 位作者 Chunfai Leung Xiaozhao Li 《Deep Underground Science and Engineering》 2023年第2期103-104,共2页
We highlight two articles in this issue:A research article titled“Excavation compensation theory and supplementary technology system for large deformation disasters”by Manchao He et al.and a review article titled“M... We highlight two articles in this issue:A research article titled“Excavation compensation theory and supplementary technology system for large deformation disasters”by Manchao He et al.and a review article titled“Mineralogy,microstructures and geomechanics of rock salt for underground gas storage”by Veerle Vandeginste et al. 展开更多
关键词 UNDERGROUND ROCK DEFORMATION
原文传递
Editorial highlights
14
作者 Qingbin Meng heping xie +2 位作者 ChunFai Leung Xiaozhao Li Jianguo Wang 《Deep Underground Science and Engineering》 2023年第1期1-1,共1页
With the increasing scarcity of shallow resources,the mining depth of coal mines has gradually increased,and the safety problem has become increasingly prominent.The grouting technology for deep roadways in fractured ... With the increasing scarcity of shallow resources,the mining depth of coal mines has gradually increased,and the safety problem has become increasingly prominent.The grouting technology for deep roadways in fractured rocks is one of key technologies for safe mining of deep resources.This paper by the team of Hongpu Kang,academician of the Chinese Academy of Engineering,systematically summarizes and analyzes the research findings in the theory,design,materials,processes,and equipment for the grouting reinforcement of fractured rocks surrounding the deep roadways.Several field cases in the Kouzidong coal mine are demonstrated on the application of pregrouting in front of heading faces,grouting in excavation,and postgrouting so as to evaluate the effects of these grouting reinforcements. 展开更多
关键词 MINING HEADING SHALLOW
原文传递
Mechanical behavior of coal under different mining rates:A case study from laboratory experiments to field testing 被引量:39
15
作者 Mingzhong Gao Jing xie +5 位作者 Yanan Gao Wenyong Wang Cong Li Bengao Yang Junjun Liu heping xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期825-841,共17页
During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are n... During the development of hot dry rock,the research on thermal fatigue damage caused by thermal shock of cold and heat cycles is the basis that ensures the long-term utilization of geothermal resources,but there are not enough relevant studies at present.Based on this,the thermal damage tests of granite at different temperatures(250,350,450°C)and quenching cycles(1,5,10,15 cycles)were carried out.Preliminary reveals the damage mechanism and heat transfer law of the quenching cycle effect on hot dry rock.The results show that with the increase of temperature and cycles,the uneven thermal expansion of minerals and the thermal shock caused by quenching promote the crack development of granite,resulting in the decrease of P-wave velocity,thermal conductivity and uniaxial compressive strength of granite.Meanwhile,the COMSOL was used to simulate the heat transfer of hot dry rock under different heat treatment conditions.It concluded that the increase in the number of quenching cycles reduced the heat transfer capacity of the granite,especially more than 10 quenching cycles,which also reflects that the thermal fatigue damage leads to a longer time for the temperature recovery of the hot dry rock mass.In addition,the three-dimensional nonlinear fitting relationship among thermal conductivity,temperature and cycle number was established for the first time,which can better reveal the change rule of thermal conductivity after quenching thermal fatigue effect of hot dry rock.The research results provide theoretical support for hot dry rock reservoir reconstruction and production efficiency evaluation. 展开更多
关键词 Mining rate Loading rate Fracture evolution Mining pressure Uniaxial compressive strength DIC
下载PDF
Energy analysis and criteria for structural failure of rocks 被引量:41
16
作者 heping xie Liyun Li +1 位作者 Ruidong Peng Yang Ju 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2009年第1期11-20,共10页
The intrinsic relationships between energy dissipation,energy release,strength and abrupt structural failure are key to understanding the evolution of deformational processes in rocks.Theoretical and experimental stud... The intrinsic relationships between energy dissipation,energy release,strength and abrupt structural failure are key to understanding the evolution of deformational processes in rocks.Theoretical and experimental studies confirm that energy plays an important role in rock deformation and failure.Dissipated energy from external forces produces damage and irreversible deformation within rock and decreases rock strength over time.Structural failure of rocks is caused by an abrupt release of strain energy that manifests as a catastrophic breakdown of the rock under certain conditions.The strain energy released in the rock volume plays a pivotal role in generating this abrupt structural failure in the rocks.In this paper,we propose criteria governing(1) the deterioration of rock strength based on energy dissipation and(2) the abrupt structural failure of rocks based on energy release.The critical stresses at the time of abrupt structural failure under various stress states can be determined by these criteria.As an example,the criteria have been used to analyze the failure conditions of surrounding rock of a circular tunnel. 展开更多
关键词 岩石变形 结构破坏 能源分析 标准管 能量耗散 结构失效 岩石强度 应变释放
下载PDF
Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO_2 and Al_2O_3 被引量:16
17
作者 Lin Wang Weizao Liu +7 位作者 Jingpeng Hu Qiang Liu Hairong Yue Bin Liang Guoquan Zhang Dongmei Luo heping xie Chun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期583-592,共10页
Large quantities of CO_2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO_2 emission reduction and comprehensive utilization of t... Large quantities of CO_2 and blast furnace slag are discharged in the iron and steel industry. Mineral carbonation of blast furnace slag can offer substantial CO_2 emission reduction and comprehensive utilization of the solid waste.This paper describes a novel route for indirect mineral carbonation of titanium-bearing blast furnace(TBBF) slag,in which the TBBF slag is roasted with recyclable(NH_4)_2SO_4(AS) at low temperatures and converted into the sulphates of various valuable metals, including calcium, magnesium, aluminium and titanium. High value added Ti-and Al-rich products can be obtained through stepwise precipitation of the leaching solution from the roasted slag. The NH_3 produced during the roasting is used to capture CO_2 from flue gases. The NH_4HCO_3 and(NH_4)_2CO_3 thus obtained are used to carbonate the CaSO_4-containing leaching residue and MgSO_4-rich leaching solution, respectively. In this study, the process parameters and efficiency for the roasting, carbonation and Ti and Al recovery were investigated in detail. The results showed that the sulfation ratios of calcium,magnesium, titanium and aluminium reached 92.6%, 87% and 84.4%, respectively, after roasting at an AS-to-TBBF slag mass ratio of 2:1 and 350 °C for 2 h. The leaching solution was subjected to hydrolysis at 102 °C for 4 h with a Ti hydrolysis ratio of 95.7% and the purity of TiO_2 in the calcined hydrolysate reached 98 wt%.99.7% of aluminium in the Ti-depleted leaching solution was precipitated by using NH_3. The carbonation products of Ca and Mg were CaCO_3 and(NH_4)_2 Mg(CO_3)_2·4H_2O, respectively. The latter can be decomposed into MgCO_3 at 100–200 °C with simultaneous recovery of the NH_3 for reuse. In this process, approximately 82.1% of Ca and 84.2%of Mg in the TBBF slag were transformed into stable carbonates and the total CO_2 sequestration capacity per ton of TBBF slag reached up to 239.7 kg. The TiO_2 obtained can be used directly as an end product, while the Al-rich precipitate and the two carbonation products can act, respectively, as raw materials for electrolytic aluminium,cement and light magnesium carbonate production for the replacement of natural resources. 展开更多
关键词 AL2O3 TiO2 碳酸盐 矿物质 炉渣 饱和 炉子 强风
下载PDF
Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress:A review 被引量:17
18
作者 heping xie Jun Lu +2 位作者 Cunbao Li Minghui Li Mingzhong Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期915-950,共36页
It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_... It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation. 展开更多
关键词 True triaxial stress Deep rock mass Mechanical properties Strength criterion Permeability characteristics Dynamic disaster
下载PDF
An efficient methodology for utilization of K-feldspar and phosphogypsum with reduced energy consumption and CO2 emissions 被引量:11
19
作者 Zhixi Gan Zheng Cui +5 位作者 Hairong Yue Siyang Tang Changjun Liu Chun Li Bin Liang heping xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第11期1541-1551,共11页
The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an effic... The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum. 展开更多
关键词 排放问题 磷石膏 钾长石 综合利用 可持续利用 可持续发展 自然资源 工业废物
下载PDF
Scientific and Engineering Progress in CO_2 Minerali zation Using Industrial Waste and Natural Minerals 被引量:12
20
作者 heping xie Hairong Yue +5 位作者 Jiahua Zhu Bin Liang Chun Li Yufei Wang Lingzhi xie Xiangge Zhou 《Engineering》 SCIE EI 2015年第1期150-157,共8页
The issues of reducing CO_2 levels in the atmo-sphere, sustainably utilizing natural mineral resources,and dealing with indus trial waste offer challenging opportunities for sustainable development in energy and the e... The issues of reducing CO_2 levels in the atmo-sphere, sustainably utilizing natural mineral resources,and dealing with indus trial waste offer challenging opportunities for sustainable development in energy and the environment. The latest advances in CO_2 mineralization technology involving natural minerals and industrial waste are summarized in this paper, with great emphasis on the advancement of fundamental science, economic evaluation, and engineering applications. We discuss several lead-ing large-scale CO_2 mineralization methodologies from a techn ical and engineering-science perspective. For each technology option, we give an overview of the technical parameters, reaction pathway, reactivity, procedural scheme, and laboratorial and pilot devices. Furthermore, we present a discussion of each technology based on experimental results and the literature. Finally, current gaps in knowledge are identified in the conclusion, and an overview of the challenges and opportunities for future research in this field is provided. 展开更多
关键词 大气二氧化碳 基础科学 工程科学 天然矿物 工业废物 碳矿化 技术参数 可持续利用
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部