As buildings evolve to meet the challenges of energy efficiency and indoor comfort,phase change materials(PCM)emerge as a promising solution due to their ability to store and release latent heat.This paper explores th...As buildings evolve to meet the challenges of energy efficiency and indoor comfort,phase change materials(PCM)emerge as a promising solution due to their ability to store and release latent heat.This paper explores the transformative impact of incorporating PCMon the hygrothermal dynamics of multi-zone constructions.The study focuses on analyzing heat transfer,particularly through thermal conduction,in a wall containing PCM.A novel approach was proposed,wherein the studied system(sensitive balance)interacts directly with a latent balance to realistically define the behavior of specific humidity and mass flow rates.In addition,a numerical model implemented in MATLAB software has been developed to investigate the effect of integrating PCM on the hygrothermal balances inside the building.The obtained results indicate a consistent response in internal temperatures,specific humidity,and mass flow rates,with temperature differences ranging from 5℃to 13℃and a maximum phase shift of 13 h.In addition,the findings provided valuable insights into optimizing the design and performance of multi-zone constructions,offering a sustainable pathway for enhancing building resilience and occupant well-being.展开更多
Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refri...Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.展开更多
Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal va...Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.展开更多
基金supported in entire part by the Biomaterials and Transport Phenomena LaboratoryAgreementNo.30303-12-2003,at theUniversity of Medea.
文摘As buildings evolve to meet the challenges of energy efficiency and indoor comfort,phase change materials(PCM)emerge as a promising solution due to their ability to store and release latent heat.This paper explores the transformative impact of incorporating PCMon the hygrothermal dynamics of multi-zone constructions.The study focuses on analyzing heat transfer,particularly through thermal conduction,in a wall containing PCM.A novel approach was proposed,wherein the studied system(sensitive balance)interacts directly with a latent balance to realistically define the behavior of specific humidity and mass flow rates.In addition,a numerical model implemented in MATLAB software has been developed to investigate the effect of integrating PCM on the hygrothermal balances inside the building.The obtained results indicate a consistent response in internal temperatures,specific humidity,and mass flow rates,with temperature differences ranging from 5℃to 13℃and a maximum phase shift of 13 h.In addition,the findings provided valuable insights into optimizing the design and performance of multi-zone constructions,offering a sustainable pathway for enhancing building resilience and occupant well-being.
文摘Refrigeration plays a significant role across various aspects of human life and consumes substantial amounts of electrical energy.The rapid advancement of green cooling technology presents numerous solar-powered refrigeration systems as viable alternatives to traditional refrigeration equipment.Exergy analysis is a key in identifying actual thermodynamic losses and improving the environmental and economic efficiency of refrigeration systems.In this study exergy analyze has been conducted for a solar-powered vapor compression refrigeration(SP-VCR)system in the region of Gharda颽(Southern Algeria)utilizing R1234ze(E)fluid as an eco-friendly substitute for R134a refrigerant.A MATLAB-based numerical model was developed to evaluate losses in different system components and the exergy efficiency of the SP-VCR system.Furthermore,a parametric study was carriedout to analyze the impact of various operating conditions on the system’s exergy destruction and efficiency.The obtained results revealed that,for both refrigerants,the compressor exhibited the highest exergy destruction,followed by the condenser,expansion valve,and evaporator.However,the system using R1234ze(E)demonstrated lower irreversibility compared to that using R134a refrigerant.The improvements made with R1234ze are 71.95%for the compressor,39.13%for the condenser,15.38%for the expansion valve,5%for the evaporator,and 54.76%for the overall system,which confirm the potential of R1234ze(E)as a promising alternative to R134a for cooling applications.
基金the Biomaterials and Transport Phenomena Laboratory Agreement No.30303-12-2003,at the University of Medea.
文摘Seawater desalination stands as an increasingly indispensable solution to address global water scarcity issues.This study conducts a thorough exergoenvironmental analysis of a multi-effect distillation with thermal vapor compression(MED-TVC)system,a highly promising desalination technology.The MED-TVC system presents an energy-efficient approach to desalination by harnessing waste heat sources and incorporating thermal vapor compression.The primary objective of this research is to assess the system’s thermodynamic efficiency and environmental impact,considering both energy and exergy aspects.The investigation delves into the intricacies of energy and exergy losses within the MED-TVC process,providing a holistic understanding of its performance.By scrutinizing the distribution and sources of exergy destruction,the study identifies specific areas for enhancement in the system’s design and operation,thereby elevating its overall sustainability.Moreover,the exergoenvironmental analysis quantifies the environmental impact,offering vital insights into the sustainability of seawater desalination technologies.The results underscore the significance of every component in the MED-TVC system for its exergoenvironmental performance.Notably,the thermal vapor compressor emerges as pivotal due to its direct impact on energy efficiency,exergy losses,and the environmental footprint of the process.Consequently,optimizing this particular component becomes imperative for achieving a more sustainable and efficient desalination system.