Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO<sub>2</sub> as bactericidal agent;however, conventional TiO<sub>2</sub> requires u...Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO<sub>2</sub> as bactericidal agent;however, conventional TiO<sub>2</sub> requires ultraviolet radiation or visible light to exercise its photocatalytic properties and its induced antimicrobial activity. In order to expand its applications directed at wide civil life, antibacterial TiO<sub>2</sub> being usable under dark conditions has been demanded. The present paper describes the powder characterization of newly developed potassium K and phosphorous P co-doped nanometer-size anatase TiO<sub>2</sub> powders using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM & TEM), Brunauer-Emmett-Teller method (BET), fourier-transform infrared spectroscopy (FT-IR), X-ray absorption fine structure (XAFS), electron spin resonance (ESR) and chemiluminescence (CL). It was found for the first time that thus prepared anatase TiO<sub>2</sub> could submit much reactive oxygen species (ROS) even in the dark, which has close relation with bactericidal activity in light interception.展开更多
Lath-shaped and highly crystalline trioctahedral smectites were synthesized under hydrothermal conditions. The quenched glasses with stoichiometrically dehydrated Na-smectite compositions were treated at (a) 500℃ a...Lath-shaped and highly crystalline trioctahedral smectites were synthesized under hydrothermal conditions. The quenched glasses with stoichiometrically dehydrated Na-smectite compositions were treated at (a) 500℃ and 100 MPa for 1 and 11 days; and (b) 300℃ and 100 MPa for 7 days. The crystallinity and particle size of products were dependent on the chemical composition of the starting glass, synthetic temperature and duration of hydrothermal treatment. The high structural ordering and large dimensions of the products were confirmed from the sharpness of XRD peaks; and hydration behavior under controlled relative humidity. Transmission electron microscopy was also performed for the characterization of the particle size of product. Particle sizes vary from ca. 10 nm to a few pm by changing the chemical compositions of the starting materials. The product with the highest structural ordering and largest dimension was obtained from Nao.33(Mg1.83Al0.67)Si4O11 glass treated at 500℃ and 100 MPa for 1 day. The obtained results also confirmed the metastability and compositional dependency in the formation of highly crystalline trioctahedral smectite at hydrothermal conditions.展开更多
文摘Recently, under the circumstances of pandemic of COVID-19 much attention has been paid to titanium dioxide TiO<sub>2</sub> as bactericidal agent;however, conventional TiO<sub>2</sub> requires ultraviolet radiation or visible light to exercise its photocatalytic properties and its induced antimicrobial activity. In order to expand its applications directed at wide civil life, antibacterial TiO<sub>2</sub> being usable under dark conditions has been demanded. The present paper describes the powder characterization of newly developed potassium K and phosphorous P co-doped nanometer-size anatase TiO<sub>2</sub> powders using X-ray diffraction (XRD), scanning and transmission electron microscopies (SEM & TEM), Brunauer-Emmett-Teller method (BET), fourier-transform infrared spectroscopy (FT-IR), X-ray absorption fine structure (XAFS), electron spin resonance (ESR) and chemiluminescence (CL). It was found for the first time that thus prepared anatase TiO<sub>2</sub> could submit much reactive oxygen species (ROS) even in the dark, which has close relation with bactericidal activity in light interception.
文摘Lath-shaped and highly crystalline trioctahedral smectites were synthesized under hydrothermal conditions. The quenched glasses with stoichiometrically dehydrated Na-smectite compositions were treated at (a) 500℃ and 100 MPa for 1 and 11 days; and (b) 300℃ and 100 MPa for 7 days. The crystallinity and particle size of products were dependent on the chemical composition of the starting glass, synthetic temperature and duration of hydrothermal treatment. The high structural ordering and large dimensions of the products were confirmed from the sharpness of XRD peaks; and hydration behavior under controlled relative humidity. Transmission electron microscopy was also performed for the characterization of the particle size of product. Particle sizes vary from ca. 10 nm to a few pm by changing the chemical compositions of the starting materials. The product with the highest structural ordering and largest dimension was obtained from Nao.33(Mg1.83Al0.67)Si4O11 glass treated at 500℃ and 100 MPa for 1 day. The obtained results also confirmed the metastability and compositional dependency in the formation of highly crystalline trioctahedral smectite at hydrothermal conditions.