In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220℃.Five groups of samples were prepared using different combi...In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220℃.Five groups of samples were prepared using different combinations of the solid solution(S),aging treatment at 220℃ for 30 h(A),and hot compression at 490℃ to a true strain of 0.25(C).The abbreviations for the samples are S,SA,SC,SAC,and SCA.Upon examining the yield strength and creep resistance,it was found that creep resistance could not be directly predicted by the yield strength.The stability of the deformation bands(DBs)induced by prior thermo-mechanical treatment plays an important role in determining the creep resistance.The dislocation of the DBs and demonstrated the best creep resistance in the SAC sample,which were prepared using a solid solution,aging treatment,and subsequent hot compression.However,despite the highest yield strength,frequent dislocation motions destroyed the stability of the DBs and deteriorated the creep resistance of the SCA sample,which were prepared using a solid solution,hot compression,and subsequent aging treatment.Among the thermo-mechanical treatments used in this study,the application of aging treatment was important to obtain the resultant creep resistance.When the aging treatment was performed prior to hot compression,the creep resistance could be further enhanced based only on hot compression.Accordingly,the sequence from the strongest to the weakest creep resistance was SAC>SC>S>SCA>SA.展开更多
The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 al...The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements.展开更多
The porosity, pore size and softening of 6063 aluminum alloy CMT MIX + Synchropulse welded joint with different welding speeds were studied. The results show that with the increase of welding speed(from 55 to 65 cm/mi...The porosity, pore size and softening of 6063 aluminum alloy CMT MIX + Synchropulse welded joint with different welding speeds were studied. The results show that with the increase of welding speed(from 55 to 65 cm/min), the porosity increases dramatically(from 0.1% to 3.9%) and large pores(341.1 μm) appear. The pore size distributions are mainly concentrated at 87.8 and 20.6 μm in the joints produced from weld speeds of 65 and 55 cm/min, respectively. The dissolution and transformation of the β′′ phase in the base metal(BM) result in a significant softening of both the fusion zone and heat-affected zone, and the latter was more serious. The effects of welding speed on the average tensile strength of the full penetration welded joints are minor, which was about 155 MPa(67.4% that of the BM).展开更多
Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the conte...Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the contents of inclusions in the surface, center, and bottom layers of the molten metal. In the results, main inclusions observed and determined by Prefil and PoD FA methods are MgO, Al2O3, spinel(MgAl2O4), and TiB2 particles or thin films. It is found that some small particles of Al2O3 and MgO are transformed into spinel particles, and the formation rate increases as the temperature and the holding period of melt increase. The content of inclusions increases from 3.37 mm^2×kg^-1 to 7.54 mm^2×kg^-1 and then decreases to 3.08 mm^2×kg^-1 after holding for 90 min. This is attributed to a settling phenomenon and a significant increase in settling velocity after holding for 60 min. The content of inclusion particles decreases by means of settlement and flotation in liquid aluminum with an increase in holding time. The theoretical analysis and experiment results are in essential agreement with those from industrial production.展开更多
This work concerns the distinguished roles of static aging and strain aging in the creep resistance of a hot-rolled Mg-4Y-3.5Nd alloy.The solution-treated sample is named AS while the peak-aged sample ob-tained from s...This work concerns the distinguished roles of static aging and strain aging in the creep resistance of a hot-rolled Mg-4Y-3.5Nd alloy.The solution-treated sample is named AS while the peak-aged sample ob-tained from static aging at 220℃ is named AA.The strain aging(creep loading)was performed for both AS and AA samples at 220,250 and 280℃,respectively.The results showed that the creep resistance of both samples was closely related to the width of precipitate-free zones(PFZs).Under low stress,the dislocation cross-slip was effectively delayed by the precipitates and the existing PFZs widened slowly in the AA sample,leading to its stronger creep resistance compared to the AS sample.Inversely,under high stress,pyramidal<c+a>slip was more frequently activated,which could not be delayed by the coars-ened precipitates.Consequently,the widening rate of PFZs became fast and the creep resistance became weaker in the AA sample.From the above-mentioned results,this work provides a novel guide for using Mg alloys with rare-earth addition.At the temperature range of 220-280℃,static aging is positive for creep resistance under low stress,while directly performing strain aging without static aging is recom-mended for creep resistance under high stress.展开更多
High strength and low corrosion resistance are always the contradiction in Al-Si-Cu-Mg cast alloy due to introducing high Cu and Mg levels.In this work,the new strategy was achieved for enhancing corrosion resistance ...High strength and low corrosion resistance are always the contradiction in Al-Si-Cu-Mg cast alloy due to introducing high Cu and Mg levels.In this work,the new strategy was achieved for enhancing corrosion resistance and mechanical properties by regulating multi-scale microstructure characteristics in Al-9Si-4.2Cu-0.25Mg-Zr alloy.Electrochemical and corrosion morphology results indicate that the addition of Zr significantly enhances the corrosion resistance of the alloy.The grain refinement inhibits the charge transfer process between cathode phases and the matrix is the main reason at the Zr level of less than 0.15%.When the Zr level is up to 0.3%,the multi-scale synergistic effect of grain refinement and passive film enhancement significantly inhibits the corrosion process.Moreover,0.3%Zr addition increases the yield strength to 419 MPa,tensile strength to 490 MPa,and the acceptable fracture elongation to 3.8%.The strengthening of mechanical and corrosion properties originates from the nano-Al3Zr precipitates after T6 treatment.This study provides a novel micro-mechanism and design strategy for simultaneously improving corrosion resistance and enhancing the mechanical properties of Al-Si-Cu-Mg cast alloy.展开更多
A three-dimensional numerical model coupling the macrosegregation and magnetohydrodynamic simulations was developed to investigate the effects of electromagnetic stirring(EMS)on the macrosegregation.The results show t...A three-dimensional numerical model coupling the macrosegregation and magnetohydrodynamic simulations was developed to investigate the effects of electromagnetic stirring(EMS)on the macrosegregation.The results show that a significant swirling flow was induced by the in-mold EMS,which further changed the shape of the solidification shell and homogenized the solute elements in mold.However,the effects were only confined to the initial billet shell.The improvement in centerline segregation was observed with the usage of the final EMS(F-EMS),which led to the forced convection at the final solidification stage.The solute elements in the mushy zone were significantly even,with the maximum segregation degree of solute C reducing from 1.311 to 1.237.In addition,the effects of the stirrer positions and currents of F-EMS on the macrosegregation alleviation were numerically studied.Different values of centerline segregation were predicted with various stirrer positions and currents,and there is an optimum stirrer parameter to obtain the best macrosegregation alleviation.In the experimental conditions,the optimum position was about 7 m away from meniscus,and the optimum current was 300 A.展开更多
基金support received from the National Key Research and Development Program of China(Grant No.2022YFE0109600)the National Natural Science Foundation of China(Grant Nos.51974376 and 52071344)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2021JJ20063)the Distinguished Professor Project of Central South University(Grant No.202045009).
文摘In this study,the tensile creep behavior of a hot-rolled Mg-4Y-3.5Nd alloy subjected to different prior thermo-mechanical treatments was investigated at 220℃.Five groups of samples were prepared using different combinations of the solid solution(S),aging treatment at 220℃ for 30 h(A),and hot compression at 490℃ to a true strain of 0.25(C).The abbreviations for the samples are S,SA,SC,SAC,and SCA.Upon examining the yield strength and creep resistance,it was found that creep resistance could not be directly predicted by the yield strength.The stability of the deformation bands(DBs)induced by prior thermo-mechanical treatment plays an important role in determining the creep resistance.The dislocation of the DBs and demonstrated the best creep resistance in the SAC sample,which were prepared using a solid solution,aging treatment,and subsequent hot compression.However,despite the highest yield strength,frequent dislocation motions destroyed the stability of the DBs and deteriorated the creep resistance of the SCA sample,which were prepared using a solid solution,hot compression,and subsequent aging treatment.Among the thermo-mechanical treatments used in this study,the application of aging treatment was important to obtain the resultant creep resistance.When the aging treatment was performed prior to hot compression,the creep resistance could be further enhanced based only on hot compression.Accordingly,the sequence from the strongest to the weakest creep resistance was SAC>SC>S>SCA>SA.
基金the financial support from the National Key Research and Development Program of China(No.2022YFE0109600,2021YFB3701100)the National Natural Science Foundation of China(No.52071344,52150710544)。
基金the financial supports from the National Natural Science Foundation of China (No. U1864209)Jincheng Science and Technology Plan Project of Shanxi Province, China (No. 201702014)。
文摘The microstructural evolution of AA6061 and Mn-bearing Al-Mg-Si-Cu alloys was studied by compression tests that were carried out between 300 and 500 °C with a wide range of strain rates. Compared to the AA6061 alloy, the large amount of α-Al(MnFeCr)Si dispersoids in the Mn-bearing alloy yielded a significant increase in the flow stress under all deformation conditions. The effects of the deformation parameters on the evolution of the microstructure were studied using electronic backscatter diffraction measurements. The predominant softening mechanism of both alloys was dynamic recovery. The presence of α dispersoids in Mn-bearing alloys effectively refined the size of substructures with misorientation angles in the range of 2°-5°, which retarded the dynamic recovery. To predict the subgrain size under various deformation conditions, the threshold stresses that were caused by α dispersoids were calculated by the modified Orowan equation and incorporated into a conventional constitutive equation. The subgrain size that was predicted by the modified constitutive equation showed satisfactory agreement with the experimental measurements.
基金financially supported by the Major Program of the National Natural Science Foundation of China (No. U1864209)the “Qinglan” Project of Jiangsu Province, China。
文摘The porosity, pore size and softening of 6063 aluminum alloy CMT MIX + Synchropulse welded joint with different welding speeds were studied. The results show that with the increase of welding speed(from 55 to 65 cm/min), the porosity increases dramatically(from 0.1% to 3.9%) and large pores(341.1 μm) appear. The pore size distributions are mainly concentrated at 87.8 and 20.6 μm in the joints produced from weld speeds of 65 and 55 cm/min, respectively. The dissolution and transformation of the β′′ phase in the base metal(BM) result in a significant softening of both the fusion zone and heat-affected zone, and the latter was more serious. The effects of welding speed on the average tensile strength of the full penetration welded joints are minor, which was about 155 MPa(67.4% that of the BM).
基金financially supported by the National Natural Science Foundation of China (No. 51204046)the China Postdoctoral Science Foundation (No. 2015M581348)+2 种基金the Postdoctoral Science Foundation of Northeastern University (No. 20150302)the Doctoral Fund of the Ministry of Education of China (No. 20130042130001)the Science and Technology Program of Guangzhou, China (No. 2015B090926013)
文摘Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the contents of inclusions in the surface, center, and bottom layers of the molten metal. In the results, main inclusions observed and determined by Prefil and PoD FA methods are MgO, Al2O3, spinel(MgAl2O4), and TiB2 particles or thin films. It is found that some small particles of Al2O3 and MgO are transformed into spinel particles, and the formation rate increases as the temperature and the holding period of melt increase. The content of inclusions increases from 3.37 mm^2×kg^-1 to 7.54 mm^2×kg^-1 and then decreases to 3.08 mm^2×kg^-1 after holding for 90 min. This is attributed to a settling phenomenon and a significant increase in settling velocity after holding for 60 min. The content of inclusion particles decreases by means of settlement and flotation in liquid aluminum with an increase in holding time. The theoretical analysis and experiment results are in essential agreement with those from industrial production.
基金supported by the National Key Research and Development Program of China(Nos.2022YFE0109600 and 2021YFB3701100)the National Natural Science Foundation of China(Nos.51974376 and 52071344)the Natural Science Foundation of Hunan Province(No.2021JJ20063).
文摘This work concerns the distinguished roles of static aging and strain aging in the creep resistance of a hot-rolled Mg-4Y-3.5Nd alloy.The solution-treated sample is named AS while the peak-aged sample ob-tained from static aging at 220℃ is named AA.The strain aging(creep loading)was performed for both AS and AA samples at 220,250 and 280℃,respectively.The results showed that the creep resistance of both samples was closely related to the width of precipitate-free zones(PFZs).Under low stress,the dislocation cross-slip was effectively delayed by the precipitates and the existing PFZs widened slowly in the AA sample,leading to its stronger creep resistance compared to the AS sample.Inversely,under high stress,pyramidal<c+a>slip was more frequently activated,which could not be delayed by the coars-ened precipitates.Consequently,the widening rate of PFZs became fast and the creep resistance became weaker in the AA sample.From the above-mentioned results,this work provides a novel guide for using Mg alloys with rare-earth addition.At the temperature range of 220-280℃,static aging is positive for creep resistance under low stress,while directly performing strain aging without static aging is recom-mended for creep resistance under high stress.
基金National Natural Science Foundation of China(Grants No.52004168)Research Fund for International Senior Scientists(Grants No.52150710544)+2 种基金National Natural Science Foundation of China(Grants Nos.52171043 and 51771066)Open Fund for State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(Grants No.32115007)Aluminum-based Transportation Lightweighting Technology Demonstration Project(Grants No.2021SFGC1001).
文摘High strength and low corrosion resistance are always the contradiction in Al-Si-Cu-Mg cast alloy due to introducing high Cu and Mg levels.In this work,the new strategy was achieved for enhancing corrosion resistance and mechanical properties by regulating multi-scale microstructure characteristics in Al-9Si-4.2Cu-0.25Mg-Zr alloy.Electrochemical and corrosion morphology results indicate that the addition of Zr significantly enhances the corrosion resistance of the alloy.The grain refinement inhibits the charge transfer process between cathode phases and the matrix is the main reason at the Zr level of less than 0.15%.When the Zr level is up to 0.3%,the multi-scale synergistic effect of grain refinement and passive film enhancement significantly inhibits the corrosion process.Moreover,0.3%Zr addition increases the yield strength to 419 MPa,tensile strength to 490 MPa,and the acceptable fracture elongation to 3.8%.The strengthening of mechanical and corrosion properties originates from the nano-Al3Zr precipitates after T6 treatment.This study provides a novel micro-mechanism and design strategy for simultaneously improving corrosion resistance and enhancing the mechanical properties of Al-Si-Cu-Mg cast alloy.
基金the China Postdoctoral Science Foundation(No.2018M642308)Jiangsu Planned Projects for Postdoctoral Research Funds(No.2018K068C).
文摘A three-dimensional numerical model coupling the macrosegregation and magnetohydrodynamic simulations was developed to investigate the effects of electromagnetic stirring(EMS)on the macrosegregation.The results show that a significant swirling flow was induced by the in-mold EMS,which further changed the shape of the solidification shell and homogenized the solute elements in mold.However,the effects were only confined to the initial billet shell.The improvement in centerline segregation was observed with the usage of the final EMS(F-EMS),which led to the forced convection at the final solidification stage.The solute elements in the mushy zone were significantly even,with the maximum segregation degree of solute C reducing from 1.311 to 1.237.In addition,the effects of the stirrer positions and currents of F-EMS on the macrosegregation alleviation were numerically studied.Different values of centerline segregation were predicted with various stirrer positions and currents,and there is an optimum stirrer parameter to obtain the best macrosegregation alleviation.In the experimental conditions,the optimum position was about 7 m away from meniscus,and the optimum current was 300 A.