Objective: To study the expression of CA125 in the serum of patients with CHF and the relationship between CA125 level and the occurrence of adverse cardiovascular events. Methods: The clinical data of 132 patients wi...Objective: To study the expression of CA125 in the serum of patients with CHF and the relationship between CA125 level and the occurrence of adverse cardiovascular events. Methods: The clinical data of 132 patients with CHF admitted to Shizuishan Second People’s Hospital from January 2023 to December 2023 were collected and divided into heart function II group, heart function III group, heart function IV group according to cardiac function. 44 healthy subjects who underwent physical examination during the same period were selected as the control group. The clinical data of CA125, NT-proBNP, echocardiography and other clinical data of the four groups were compared, and the incidence of major adverse cardiovascular events was followed up for 12 months. Results: Compared with the control group, the CA125 level in the CHF group was significantly increased (P Conclusion: Serum CA125 level is related to the cardiac function level in CHF patients and increases with the deterioration of cardiac function. The increase of the index is related to the mortality rate and re-hospitalization rate, suggesting that CA125 can be used as an indicator to reflect the severity of heart failure and prognosis monitoring.展开更多
The autonomic nervous system plays a crucial role in regulating bone metabolism,with sympathetic activation stimulating bone resorption and inhibiting bone formation.We found that fractures lead to increased sympathet...The autonomic nervous system plays a crucial role in regulating bone metabolism,with sympathetic activation stimulating bone resorption and inhibiting bone formation.We found that fractures lead to increased sympathetic tone,enhanced osteoclast resorption,decreased osteoblast formation,and thus hastened systemic bone loss in ovariectomized(OVX)mice.However,the combined administration of parathyroid hormone(PTH)and theβ-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice.The effect of this treatment is superior to that of treatment with PTH or propranolol alone.In vitro,the sympathetic neurotransmitter norepinephrine(NE)suppressed PTH-induced osteoblast differentiation and mineralization,which was rescued by propranolol.Moreover,NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation,whereas these effects were reversed by propranolol.Furthermore,PTH increased the expression of the circadian clock gene Bmal1,which was inhibited by NE-βAR signaling.Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTHstimulated osteoblast differentiation.Taken together,these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.展开更多
Hepatocellular carcinoma(HCC),a prevalent solid carcinoma of significant concern,is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes.The etiology and pathologi...Hepatocellular carcinoma(HCC),a prevalent solid carcinoma of significant concern,is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes.The etiology and pathological progression of non-alcoholic steatohepatitis(NASH)-related HCC is multifactorial and multistage.However,no single animal model can accurately mimic the full NASH-related HCC pathological progression,posing considerable challenges to transition and mechanistic studies.Herein,a novel conditional inducible wild-type human HRAS overexpressed mouse model(HRAS-HCC)was established,demonstrating 100%morbidity and mortality within approximately one month under normal dietary and lifestyle conditions.Advanced symptoms of HCC such as ascites,thrombus,internal hemorrhage,jaundice,and lung metastasis were successfully replicated in mice.In-depth pathological features of NASH-related HCC were demonstrated by pathological staining,biochemical analyses,and typical marker gene detections.Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival,further confirming the accuracy and reliability of the model.Based on protein-protein interaction(PPI)network and RNA sequencing analyses,we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis,with subsequent progression to HCC.Collectively,our study successfully duplicated natural sequential progression in a single murine model over a very short period,providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.展开更多
As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(S...As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.展开更多
Oyster is a bivalve mollusk widely distributed in estuarine and shallow sea environments.Its growth and burial process is a carbon sequestration and storage process.Oyster shell may stop growing due to suffer from fre...Oyster is a bivalve mollusk widely distributed in estuarine and shallow sea environments.Its growth and burial process is a carbon sequestration and storage process.Oyster shell may stop growing due to suffer from freeze shock during the winter season within a temperate climate,therefore,in order to study the carbon sequestration capacity of oysters we need to know the water temperature at which the shell suffer from winter freeze shock.This study examinesδ^(18)O profiles across consecutive micro-growth layers found in three modern Pacific oyster shells from the northwest coast of Bohai Bay.A total of 165 oxygen isotope values from sequential samples of their left shells showed periodically varying values,and the variation fluctuation of oxygen isotope values was 4.97‰on average.According to the variation range of the oxygen isotope value of the shell,combined with the sea surface temperature and the sea surface salinity data of the water in which the oysters grew,the water temperature that suffer from winter freeze shock and stops or retards the growth of Pacific oysters in Bohai Bay is about 8.3℃,and the corresponding period is from December to March of the following year.The calcification time of oysters within one year is nearly a month longer than previously thought,therefore,its carbon sink potential is also improved.展开更多
A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The rati...A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The ratio of the marine species Thalassionema nitzschioides to the intertidal-coastal species complex Cyclotella striata/stylorum serves as a novel proxy for assessing the strength of marine influence.Chronological data,corrected for the local residence time effect,facilitated the construction of a diatom proxy-based marine influence curve for the study area.This curve delineates the dynamics of marine influence and their correlations with paleo-climate fluctuations and the East Asian monsoon variability,as well as their role in chenier formation.Results include:(1)eight periods of intensified marine influence have been documented since 7000 a BP in the study area.The peak of each period,as determined by the diatom proxy,corresponds closely to the warm climatic phases and stronger East Asian summer monsoons,suggesting that the peaks marine influence indicate typically the periods of climatic warmth and monsoon activity intensification in the region;(2)a strong correlation exists between the development of cheniers and marine influence,and chenier formation began with the increasing marine influence and terminated at the end of warm periods as marine influence weakens.The climatic changes in the coastal area,as indicated by the diatom proxy,hold significant potential for future related research endeavors.展开更多
Anther dehiscence controls optimal interaction between pollen and stigma,thereby determining the successful sexual reproduction.The regulators or mechanisms of this process remain elusive.Here,two CRISPR/Cas9 mutants ...Anther dehiscence controls optimal interaction between pollen and stigma,thereby determining the successful sexual reproduction.The regulators or mechanisms of this process remain elusive.Here,two CRISPR/Cas9 mutants of a rice exocyst subunit gene SEC3A,sec3a-1 and sec3a-2,showed anther indehiscence at anthesis and male sterility at maturity.Pollen viability and germination in the mutants were partly defective,whereas their female gametes undergone a normal development.Hybrid or self-pollinated seeds could be produced by artificial pollination,suggesting potential use of a weak sec3a mutant as a female line during hybrid breeding.SEC3A is widely expressed in various tissues,including anther walls.Further results showed an excessive IAA accumulation and no endothecium lignification in sec3a-1/2 anthers.Our findings suggest that SEC3A appears to regulate anther dehiscence by modulating auxin signaling,providing insights into regulation of anther dehiscence and function of exocyst in plants.展开更多
We investigate the chiral edge states-induced Josephson current–phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential.By...We investigate the chiral edge states-induced Josephson current–phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential.By solving the Bogoliubov–de Gennes equation,a φ_(0) Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential,which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region.Interestingly,when the direction of polarization of light is changed,-φ_(0) to φ_(0) transition generates,which generalizes the concept of traditional 0–πtransition.Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based φ_(0)Josephson junction.展开更多
Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.How...Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.展开更多
AIM:To evaluate the efficacy and safety of perfluoro-n-octane(PFO)for ophthalmic surgery versus F-Octane as an intraoperative tamponade in pars plana vitrectomy(PPV)in management of retinal detachment.METHODS:This mul...AIM:To evaluate the efficacy and safety of perfluoro-n-octane(PFO)for ophthalmic surgery versus F-Octane as an intraoperative tamponade in pars plana vitrectomy(PPV)in management of retinal detachment.METHODS:This multicenter,prospective,randomized,double-masked,parallel-controlled,non-inferiority trial was conducted in three ophthalmology clinical centers in China.Patients with retinal detachment,who were eligible for PPV were consecutively enrolled.Participants were assigned to PFO for ophthalmic surgery or F-Octane for intraocular tamponade in a 1:1 ratio.Best-corrected visual acuity(BCVA),intraocular pressure(IOP)measurement,and dilated fundus examination were performed preoperatively and at 1,7±1,28±3d postoperatively.The primary outcome was complete retinal reattachment rate at postoperative day one.The non-inferiority margin was set at 9.8%.The secondary outcomes included intraoperative retinal reattachment rate,and mean changes in IOP and BCVA from baseline to 1,7±1,28±3d postoperatively,respectively.Safety analyses were presented for all randomly assigned participates in this study.RESULTS:Totally 124 eligible patients completed the study between Mar.14,2016 and Jun.7,2017.Sixty of them were randomly assigned to the PFO for ophthalmic surgery group,and 64 were assigned to the F-Octane group.Baseline characteristics were comparable between the two groups.Both groups achieved 100%retinal reattachment at postoperative day one(difference 0,95%CI:-6.21%to 5.75%,P=1).The pre-defined noninferiority criterion was met.No significant difference was observed in intraoperative retinal reattachment rate(difference 1.77%,P=0.61),mean changes in IOP(difference 0.36,-0.09,2.22 mm Hg at 1,7±1,28±3d postoperatively,with all P>0.05)and BCVA(difference 0.04,-0.02,0.06 logMAR at 1,7±1,28±3d postoperatively,all P>0.05)between the two groups.No apparent adverse events related to the utilization of PFO were reported.CONCLUSION:In patients with retinal detachment undergoing PPV,PFO for ophthalmic surgery is non-inferior to F-Octane as an intraocular tamponade,and both are safe and well-tolerated.展开更多
Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell tr...Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.展开更多
A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unkn...A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation.展开更多
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a...Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).展开更多
Intelligent and connected vehicles(ICVs)are confronted with critically complex traffic scenarios and safety challenges that have attracted increasing attention from academia and industry.The intelligent safety of ICVs...Intelligent and connected vehicles(ICVs)are confronted with critically complex traffic scenarios and safety challenges that have attracted increasing attention from academia and industry.The intelligent safety of ICVs involves several technologies and requires the common efforts of researchers and engineers,including the safety of the intended functionality(SOTIF),the safety of artificial intelligence,the intricacies of cybersecurity,and ethical dilemmas.Ensuring the intelligent safety of ICVs presents substantial chal-lenges in both research and commercialization,particularly SOTIF,which refers to the absence of unreasonable risk owing to hazards resulting from functional insufficiencies of the intended functiona-lity or reasonably foreseeable misuse by person.Because of the limited scene coverage ability of training samples and the practical application conditions without boundary restrictions,it is very dif-ficult to find the functional insufficiency of the intended function-ality and overcome it under dynamic unknown scenarios,which is also the source of SOTIF.展开更多
Since its approval by the Food and Drug Administration in 2011,transcatheter aortic valve implantation(TAVI)has rapidly evolved to become the preferred ultimate intervention for high-and intermediate-risk patients wit...Since its approval by the Food and Drug Administration in 2011,transcatheter aortic valve implantation(TAVI)has rapidly evolved to become the preferred ultimate intervention for high-and intermediate-risk patients with severe symptomatic aortic stenosis.[1]This is due to its non-open-heart,minimally invasive and off-pump advantages.[1]Nevertheless,as a result of the frequent frailty and comorbidity profiles of patients undergoing TAVI,such as advanced cardiac dysfunction and extensive coronary artery disease,or technically difficult anatomy for the procedure itself,[2-4]it is common for these patients to experience critical circulatory collapse perioperatively.These factors are linked to elevated mortality rates,necessitating suitable mechanical circulatory support(MCS)to reverse the disastrous situations.[5]展开更多
文摘Objective: To study the expression of CA125 in the serum of patients with CHF and the relationship between CA125 level and the occurrence of adverse cardiovascular events. Methods: The clinical data of 132 patients with CHF admitted to Shizuishan Second People’s Hospital from January 2023 to December 2023 were collected and divided into heart function II group, heart function III group, heart function IV group according to cardiac function. 44 healthy subjects who underwent physical examination during the same period were selected as the control group. The clinical data of CA125, NT-proBNP, echocardiography and other clinical data of the four groups were compared, and the incidence of major adverse cardiovascular events was followed up for 12 months. Results: Compared with the control group, the CA125 level in the CHF group was significantly increased (P Conclusion: Serum CA125 level is related to the cardiac function level in CHF patients and increases with the deterioration of cardiac function. The increase of the index is related to the mortality rate and re-hospitalization rate, suggesting that CA125 can be used as an indicator to reflect the severity of heart failure and prognosis monitoring.
基金supported by the National Natural Science Foundation of China(Grant Nos.82330078,81874010)the National Key Research and Development Program(Grant Nos.2020YFC2009004,2021YFC2501700).
文摘The autonomic nervous system plays a crucial role in regulating bone metabolism,with sympathetic activation stimulating bone resorption and inhibiting bone formation.We found that fractures lead to increased sympathetic tone,enhanced osteoclast resorption,decreased osteoblast formation,and thus hastened systemic bone loss in ovariectomized(OVX)mice.However,the combined administration of parathyroid hormone(PTH)and theβ-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice.The effect of this treatment is superior to that of treatment with PTH or propranolol alone.In vitro,the sympathetic neurotransmitter norepinephrine(NE)suppressed PTH-induced osteoblast differentiation and mineralization,which was rescued by propranolol.Moreover,NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation,whereas these effects were reversed by propranolol.Furthermore,PTH increased the expression of the circadian clock gene Bmal1,which was inhibited by NE-βAR signaling.Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTHstimulated osteoblast differentiation.Taken together,these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.
基金supported by the National Institutes for Food and Drug Control,State Key Laboratory of Drug Regulatory Science。
文摘Hepatocellular carcinoma(HCC),a prevalent solid carcinoma of significant concern,is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes.The etiology and pathological progression of non-alcoholic steatohepatitis(NASH)-related HCC is multifactorial and multistage.However,no single animal model can accurately mimic the full NASH-related HCC pathological progression,posing considerable challenges to transition and mechanistic studies.Herein,a novel conditional inducible wild-type human HRAS overexpressed mouse model(HRAS-HCC)was established,demonstrating 100%morbidity and mortality within approximately one month under normal dietary and lifestyle conditions.Advanced symptoms of HCC such as ascites,thrombus,internal hemorrhage,jaundice,and lung metastasis were successfully replicated in mice.In-depth pathological features of NASH-related HCC were demonstrated by pathological staining,biochemical analyses,and typical marker gene detections.Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival,further confirming the accuracy and reliability of the model.Based on protein-protein interaction(PPI)network and RNA sequencing analyses,we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis,with subsequent progression to HCC.Collectively,our study successfully duplicated natural sequential progression in a single murine model over a very short period,providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.
基金supported by the National Science Foundation of China Project(52072215,U1964203,52242213,and 52221005)National Key Research and Development(R&D)Program of China(2022YFB2503003)State Key Laboratory of Intelligent Green Vehicle and Mobility。
文摘As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges.
基金financial support from NSFC(Account 41473013,40872106,and 41627802)。
文摘Oyster is a bivalve mollusk widely distributed in estuarine and shallow sea environments.Its growth and burial process is a carbon sequestration and storage process.Oyster shell may stop growing due to suffer from freeze shock during the winter season within a temperate climate,therefore,in order to study the carbon sequestration capacity of oysters we need to know the water temperature at which the shell suffer from winter freeze shock.This study examinesδ^(18)O profiles across consecutive micro-growth layers found in three modern Pacific oyster shells from the northwest coast of Bohai Bay.A total of 165 oxygen isotope values from sequential samples of their left shells showed periodically varying values,and the variation fluctuation of oxygen isotope values was 4.97‰on average.According to the variation range of the oxygen isotope value of the shell,combined with the sea surface temperature and the sea surface salinity data of the water in which the oysters grew,the water temperature that suffer from winter freeze shock and stops or retards the growth of Pacific oysters in Bohai Bay is about 8.3℃,and the corresponding period is from December to March of the following year.The calcification time of oysters within one year is nearly a month longer than previously thought,therefore,its carbon sink potential is also improved.
基金Supported by the Youth Fund of National Natural Science Foundation of China(No.41806109)the project of China Geological Survey(Nos.DD20230091,DD20211301)。
文摘A total of 98 samples from two boreholes in shallow sea area and two oyster reefs in adjacent coastal plain in the northwestern coast of Bohai Bay were collected for diatom analyses and species identification.The ratio of the marine species Thalassionema nitzschioides to the intertidal-coastal species complex Cyclotella striata/stylorum serves as a novel proxy for assessing the strength of marine influence.Chronological data,corrected for the local residence time effect,facilitated the construction of a diatom proxy-based marine influence curve for the study area.This curve delineates the dynamics of marine influence and their correlations with paleo-climate fluctuations and the East Asian monsoon variability,as well as their role in chenier formation.Results include:(1)eight periods of intensified marine influence have been documented since 7000 a BP in the study area.The peak of each period,as determined by the diatom proxy,corresponds closely to the warm climatic phases and stronger East Asian summer monsoons,suggesting that the peaks marine influence indicate typically the periods of climatic warmth and monsoon activity intensification in the region;(2)a strong correlation exists between the development of cheniers and marine influence,and chenier formation began with the increasing marine influence and terminated at the end of warm periods as marine influence weakens.The climatic changes in the coastal area,as indicated by the diatom proxy,hold significant potential for future related research endeavors.
基金supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(32171970)the Chongqing Outstanding Scientists Project(cstc2022ycjh-bgzxm0073)the Natural Science Foundation of Chongqing,China(cstc2021jcyj-cxttX0004)。
文摘Anther dehiscence controls optimal interaction between pollen and stigma,thereby determining the successful sexual reproduction.The regulators or mechanisms of this process remain elusive.Here,two CRISPR/Cas9 mutants of a rice exocyst subunit gene SEC3A,sec3a-1 and sec3a-2,showed anther indehiscence at anthesis and male sterility at maturity.Pollen viability and germination in the mutants were partly defective,whereas their female gametes undergone a normal development.Hybrid or self-pollinated seeds could be produced by artificial pollination,suggesting potential use of a weak sec3a mutant as a female line during hybrid breeding.SEC3A is widely expressed in various tissues,including anther walls.Further results showed an excessive IAA accumulation and no endothecium lignification in sec3a-1/2 anthers.Our findings suggest that SEC3A appears to regulate anther dehiscence by modulating auxin signaling,providing insights into regulation of anther dehiscence and function of exocyst in plants.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104232,11805103,and 11804167)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190137 and BK20180739)+2 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.020414380195 and B230201042)the Jit-b Project(Grant No.201831)the Natural Science Fund of Nanjing University of Posts and Telecommunications(Grant No.NY222163)。
文摘We investigate the chiral edge states-induced Josephson current–phase relation in a graphene-based Josephson junction modulated by the off-resonant circularly polarized light and the staggered sublattice potential.By solving the Bogoliubov–de Gennes equation,a φ_(0) Josephson junction is induced in the coaction of the off-resonant circularly polarized light and the staggered sublattice potential,which arises from the fact that the center of-mass wave vector of Cooper pair becomes finite and the opposite center of-mass wave vector to compensate is lacking in the nonsuperconducting region.Interestingly,when the direction of polarization of light is changed,-φ_(0) to φ_(0) transition generates,which generalizes the concept of traditional 0–πtransition.Our findings provide a purely optical way to manipulate a phase-controllable Josephson device and guidelines for future experiments to confirm the presence of graphene-based φ_(0)Josephson junction.
基金supported by the National Natural Science Foundation of China(21872104,21501131,21978216 and 22272082)the Natural Science Foundation of Tianjin for Distinguished Young Scholar(20JCJQJC00150)the Analytical&Testing Center of Tiangong University for PL work。
文摘Photocatalytic H_(2) evolution from seawater splitting presents a promising approach to tackle the fossil energy crisis and mitigate carbon emission due to the abundant source of seawater and sunlight on the earth.However,the development of efficient photocatalysts for seawater splitting remains a formidable challenge.Herein,a 2D/2D ZnIn_(2)S_(4)/WO_(3)(ZIS/WO_(3))heterojunction nanostructure is fabricated to efficiently separate the photoinduced carriers by steering electron transfer from the conduction band minimum of WO_(3) to the valence band maximum of ZIS via constructing internal electric field.Subsequently,plasmonic Au nanoparticles(NPs)as a novel photosensitizer and a reduction cocatalyst are anchored on ZIS/WO_(3) surface to further enhance the optical absorption of ZIS/WO_(3) heterojunction and accelerate the catalytic conversion.The obtained Au/ZIS/WO_(3) photocatalyst exhibits an outstanding H_(2) evolution rate of 2610.6 or 3566.3μmol g^(-1)h~(-1)from seawater splitting under visible or full-spectrum light irradiation,respectively.These rates represent an impressive increase of approximately 7.3-and 6,6-fold compared to those of ZIS under the illumination of the same light source.The unique 2D/2D structure,internal electric field,and plasmonic metal modification together boost the photocatalytic H_(2) evolution rate of Au/ZIS/WO_(3),making it even comparable to H_(2) evolution from pure water splitting.The present work sheds light on the development of efficient photocatalysts for seawater splitting.
基金Supported by the Program of Shanghai Academic/Technology Research Leader(No.21XD1402700)the Clinical Research Plan of Shenkang Hospital Development Center of Shanghai(No.SHDC2022CRD001).
文摘AIM:To evaluate the efficacy and safety of perfluoro-n-octane(PFO)for ophthalmic surgery versus F-Octane as an intraoperative tamponade in pars plana vitrectomy(PPV)in management of retinal detachment.METHODS:This multicenter,prospective,randomized,double-masked,parallel-controlled,non-inferiority trial was conducted in three ophthalmology clinical centers in China.Patients with retinal detachment,who were eligible for PPV were consecutively enrolled.Participants were assigned to PFO for ophthalmic surgery or F-Octane for intraocular tamponade in a 1:1 ratio.Best-corrected visual acuity(BCVA),intraocular pressure(IOP)measurement,and dilated fundus examination were performed preoperatively and at 1,7±1,28±3d postoperatively.The primary outcome was complete retinal reattachment rate at postoperative day one.The non-inferiority margin was set at 9.8%.The secondary outcomes included intraoperative retinal reattachment rate,and mean changes in IOP and BCVA from baseline to 1,7±1,28±3d postoperatively,respectively.Safety analyses were presented for all randomly assigned participates in this study.RESULTS:Totally 124 eligible patients completed the study between Mar.14,2016 and Jun.7,2017.Sixty of them were randomly assigned to the PFO for ophthalmic surgery group,and 64 were assigned to the F-Octane group.Baseline characteristics were comparable between the two groups.Both groups achieved 100%retinal reattachment at postoperative day one(difference 0,95%CI:-6.21%to 5.75%,P=1).The pre-defined noninferiority criterion was met.No significant difference was observed in intraoperative retinal reattachment rate(difference 1.77%,P=0.61),mean changes in IOP(difference 0.36,-0.09,2.22 mm Hg at 1,7±1,28±3d postoperatively,with all P>0.05)and BCVA(difference 0.04,-0.02,0.06 logMAR at 1,7±1,28±3d postoperatively,all P>0.05)between the two groups.No apparent adverse events related to the utilization of PFO were reported.CONCLUSION:In patients with retinal detachment undergoing PPV,PFO for ophthalmic surgery is non-inferior to F-Octane as an intraocular tamponade,and both are safe and well-tolerated.
基金financially supported by the“STI2030-Major Project”of China(2023ZD04072)the National Key Research and Development Program of China(2021YFA1300400)+1 种基金the National Natural Science Foundation of China(32372099 and 32188102)the Young Science and Technology Talents(He Jian)in Hunan Province(2022RC1015)。
文摘Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.
基金This work was supported by the Postgraduate Research Innovation Project of Chongqing(CYS23217)Chongqing Modern Agricultural Industry Technology System(CQMAITS202301)+1 种基金the Science Fund for Creative Research Groups of the Natural Science Foundation of Chongqing,China(cstc2021jcyj-cxttX0004)Natural Science Foundation of Chongqing(2023NSCQ-BHX0281).
文摘A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation.
基金supported and founded by the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB311the Youth Science and Technology Talent Growth Project of Guizhou Provincial Education Department under Grant No.QJH-KY-ZK[2021]132+2 种基金the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB319the National Natural Science Foundation of China(NSFC)under Grant 61902085the Key Laboratory Program of Blockchain and Fintech of Department of Education of Guizhou Province(2023-014).
文摘Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).
文摘Intelligent and connected vehicles(ICVs)are confronted with critically complex traffic scenarios and safety challenges that have attracted increasing attention from academia and industry.The intelligent safety of ICVs involves several technologies and requires the common efforts of researchers and engineers,including the safety of the intended functionality(SOTIF),the safety of artificial intelligence,the intricacies of cybersecurity,and ethical dilemmas.Ensuring the intelligent safety of ICVs presents substantial chal-lenges in both research and commercialization,particularly SOTIF,which refers to the absence of unreasonable risk owing to hazards resulting from functional insufficiencies of the intended functiona-lity or reasonably foreseeable misuse by person.Because of the limited scene coverage ability of training samples and the practical application conditions without boundary restrictions,it is very dif-ficult to find the functional insufficiency of the intended function-ality and overcome it under dynamic unknown scenarios,which is also the source of SOTIF.
基金supported by the Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support(ZYLX202111,to XTH)Beijing Hospitals Authority“Ascent Plan”(FDL20190601,to XTH)+2 种基金Young Elite Scientists Sponsorship Program by CAST(2022QNRC001,to LSW)National Natural Science Foundation of China(82200433,to LSW)Beijing Hospitals Authority Youth Programme(QML20230602,to LSW).
文摘Since its approval by the Food and Drug Administration in 2011,transcatheter aortic valve implantation(TAVI)has rapidly evolved to become the preferred ultimate intervention for high-and intermediate-risk patients with severe symptomatic aortic stenosis.[1]This is due to its non-open-heart,minimally invasive and off-pump advantages.[1]Nevertheless,as a result of the frequent frailty and comorbidity profiles of patients undergoing TAVI,such as advanced cardiac dysfunction and extensive coronary artery disease,or technically difficult anatomy for the procedure itself,[2-4]it is common for these patients to experience critical circulatory collapse perioperatively.These factors are linked to elevated mortality rates,necessitating suitable mechanical circulatory support(MCS)to reverse the disastrous situations.[5]