Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery asse...Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.展开更多
As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electr...As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes.Although lithium anodes are regarded as the holy grail of lithium batteries,decades of exploration have not led to the successful commercialization of LMBs,due mainly to the challenges related to the inherent properties of lithium metal.To pave the way for further investigation,herein,a comprehensive review focusing on the fundamental science of lithium are provided.Firstly,the natures of lithium atoms and their isotopes,lithium clusters and lithium crystals are revisited,especially their structural and energetic properties.Subsequently,the electrochemical properties of lithium metal are reviewed.Numerous important concepts and scientific questions,including the electronic structure of lithium,influence of high pressure and low temperature on the properties of lithium,factors influencing lithium deposition,generation of lithium dendrites,and electrode potential of lithium in different electrolytes,are explained and analyzed in detail.Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed.展开更多
BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whethe...BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.展开更多
Aiming at the basic and key technical problems in prevention and control of sugarcane white leaf disease(SCWL),this study systematically overcame key technical bottleneck of prevention and control of new SCWL after 10...Aiming at the basic and key technical problems in prevention and control of sugarcane white leaf disease(SCWL),this study systematically overcame key technical bottleneck of prevention and control of new SCWL after 10 years of collaborative research,and achieved several innovative achievements.SCWL phytoplasmas newly recorded in China and the new subgroup of SCWL phytoplasmas(16SrXI-D)were discovered for the first time in Yunnan,and the whole genome analysis of the epidemic subgroup was completed.The main transmission source of SCWL pathogens has been identified as infected seed canes,and Tettigoniella viridis and Clovia conifer were newly discovered as vectors for virus transmission.The disease resistance of 25 main varieties was identified,and 10 control varieties were selected.The prevention and control strategy of"emphasizing early warning,strictly carrying out quarantine,blocking the vectors and controlling residual plants"was put forward,and a comprehensive prevention technique was established through integration of various techniques,and standardized technical regulations were formulated for demonstration application.The promotion and application of these achievements have realized scientific prevention and control of SCWL,effectively curbed the spread of SCWL,and ensured the safety of sugarcane producing areas in China,achieving great economic,social and ecological benefits and providing technical support for high-quality development,loss reduction and efficiency improvement of China's sugar industry.展开更多
Lithium-ion batteries(LIBs)have helped revolutionize the modern world and are now advancing the alternative energy field.Several technical challenges are associated with LIBs,such as increasing their energy density,im...Lithium-ion batteries(LIBs)have helped revolutionize the modern world and are now advancing the alternative energy field.Several technical challenges are associated with LIBs,such as increasing their energy density,improving their safety,and prolonging their lifespan.Pressed by these issues,researchers are striving to find effective solutions and new materials for next-generation LIBs.Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs.Polyimides(PIs),a special functional polymer,possess unparalleled advantages,such as excellent mechanical strength,extremely high thermal stability,and excellent chemical inertness;they are a promising material for LIBs.Herein,we discuss the current applications of PIs in LIBs,including coatings,separators,binders,solid-state polymer electrolytes,and active storage materials,to improve high-voltage performance,safety,cyclability,flexibility,and sustainability.Existing technical challenges are described,and strategies for solving current issues are proposed.Finally,potential directions for implementing PIs in LIBs are outlined.展开更多
A new category of lithium greases was synthesized by using poly-a-olefin(PAO8) and alkyl-tetralin as base oil, where the alkyl-tetralins were synthesized by the alkylation of tetralin and olefins. The influence of thi...A new category of lithium greases was synthesized by using poly-a-olefin(PAO8) and alkyl-tetralin as base oil, where the alkyl-tetralins were synthesized by the alkylation of tetralin and olefins. The influence of thickener concentration, alkyl-tetralin content and type of blend oils on the rheological and tribological performance of lithium grease was investigated. The microstructures of soap fibers were measured to reveal the structure-property correlations. The concentration of thickener and alkyl-tetralin content obviously affect the lubricating performance of lithium grease, while the molecular structure of alkyltetralin has no obvious impact on their properties. It was found that alkyl-tetralin could significantly enhance the thickening ability of PAO8 base oils, and decrease the amount of thickeners by 1.5%(mass).Lithium greases prepared using 20%(mass) alkyl-tetralin as co-base oil exhibited high colloidal stability,excellent rheological behaviors and tribological properties.展开更多
The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic react...The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic reactions that occurred between the liquid electrolyte and Li-metal anode could be largely inhibited by regulating the Li+-solvation structure.The saturated Li+-solvation species exist in commonly used LiPF 6 liquid electrolyte that needs extra energy to desolvation during Li-electrodeposition.Partial solvation induced high-energy state Li-ions would be more energy favorable during the electron-reduction process,dominating the competition with solvent reduction reactions.The Li-symmetric cells that are cycling at higher temperatures show better performance;the cycled lithium metal anode with metallic lustre and the dendrite-free surface is observed.Theoretical calculation and experimental measurements reveal the existence of high-energy state Li+-solvates species,and their concentration increases with temperature.This study provides insight into the Li+-solvation structure and its electrodeposition characteristics.展开更多
The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neu...The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique.This imposes the requirements for the detector,including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers.To satisfy these demands,a large-area array of 3He-filled linear position-sensitive detectors(LPSDs)was constructed,each with a diameter of 1 inch and pressure of 20 atm.It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of 3He LPSDs,covering a range of scattering angles from 3°to 170°with a total detector area of approximately 7 m2.The detector works in air,which is separated from the vacuum environment to facilitate installation and maintenance.The characteristics of the MPI detector were investigated through Monte Carlo(MC)simulations using Geant4 and experimental measurements.The results suggest that the detectors are highly efficient in the wavelength range of the MPI,and an efficiency over 25%is achievable for above 0.1 A neutrons.A minimal position resolution of 6.4 mm full width at half maximum(FWHM)along the tube length was achieved at a working voltage of 2200 V,and a deviation below 2 mm between the real and measured positions was attained in the beam experiment.The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz,which satisfied the requirements of experiments with a high event rate.Observations of its operation over the past year have shown that the detector works steadily in sample experiments,which allows the MPI to serve the user program successfully.展开更多
The energy-resolved neutron imaging spectrometer(ERNI)will be installed in 2022 according to the spectrometer construction plan of the China Spallation Neutron Source(CSNS).The instrument requires neutron detectors wi...The energy-resolved neutron imaging spectrometer(ERNI)will be installed in 2022 according to the spectrometer construction plan of the China Spallation Neutron Source(CSNS).The instrument requires neutron detectors with the coverage area of approximately 4 m^(2)in 5°-170°neutron diffraction angle.The neutron detection efficiency needs to be better than 40%at 1 A neutron wavelength.The spatial resolution should be better than 3 mm×50 mm in the horizontal and vertical directions respectively.We develop a one-dimensional scintillator neutron detector which is composed of the^(6)Li F/Zn S(Ag)scintillation screens,the wavelength-shifting fiber(WLSF)array,the silicon photomultipliers(Si PMs),and the self-designed application-specific integrated circuit(ASIC)readout electronics.The pixel size of the detector is designed as 3 mm×50 mm,and the neutron-sensitive area is 50 mm×200 mm.The performance of the detector prototype is measured using neutron beam 20#of the CSNS.The maximum counting rate of 247 k Hz,and the detection efficiency of63%at 1.59 A are obtained.The test results show that the performance of the detector fulfills the physical requirements of the ERNI under construction at the CSNS.展开更多
Objective This prospective single-arm clinical trial aimed to evaluated the feasibility and safety of the application of the SHURUI system(Beijing Surgerii Technology Co.,Ltd.,Beijing,China),a novel purpose-built robo...Objective This prospective single-arm clinical trial aimed to evaluated the feasibility and safety of the application of the SHURUI system(Beijing Surgerii Technology Co.,Ltd.,Beijing,China),a novel purpose-built robotic system,in single-port robotic radical prostatectomy.Methods Sixteen patients diagnosed with prostate cancer were prospectively enrolled in and underwent robotic radical prostatectomy from October 2021 to August 2022 by the SHURUI single-port robotic surgical system.The demographic and baseline data,surgical,oncological,and functional outcomes as well as follow-up data were recorded.Results The mean operative time was 226.3(standard deviation[SD]52.0)min,and the mean console time was 183.4(SD 48.3)min,with the mean estimated blood loss of 116.3(SD 90.0)mL.The mean length of postoperative hospital stay was 4.50(SD 0.97)days.Two patients had postoperative complications(Clavien-Dindo Grade II),and both patients improved after conservative treatment.All patients’postoperative prostate-specific antigen levels decreased to below 0.2 ng/mL 1 month after discharge.The mean prostate-specific antigen level further decreased to a mean of 0.0219(SD 0.0641)ng/mL 6 months after surgery.Thirty days postoperatively,12 out of 16 patients reported using no more than one urinary pad per day,and all patients reported satisfactory urinary control without the need for pads 6 months after surgery.Conclusion The SHURUI system is safe and feasible in performing radical prostatectomy via both transperitoneal and extraperitoneal approaches.Tumor control and urinary continence were satisfying for patients enrolled in.The next phase involves conducting a large-scale,multicenter randomized controlled trial to thoroughly assess the effectiveness and safety of the new technology in a broader population.展开更多
Naphthenic base oil is an important lubricating base oil and very scarce in the global petroleum resources.Herein,a series of alkylated tetralin fluids similar to naphthenic base oils were produced by the alkylation o...Naphthenic base oil is an important lubricating base oil and very scarce in the global petroleum resources.Herein,a series of alkylated tetralin fluids similar to naphthenic base oils were produced by the alkylation of tetralin and a-olefins(n-hexene,n-octene,n-decene)with ionic liquid Et_3NHCl/AlCl_(3)as the catalyst,where the applied raw materials are totally derived from the coal chemical industry.The product composition could be controlled by adjusting the feeding ratio of tetralin and olefin.The synthetic fluids were evaluated as lubricating base oils to reveal the structure-property correlations.Their principal physicochemical and tribological properties depend on the chain-length of a-olefins and the number of alkyl groups onto the aromatic rings.Bis-(octyl-or decyl-)alkyl tetralin exhibited good properties in terms of viscosity,thermo-oxidation stability and pour point,as well as friction-reducing and anti-wear performance,showing great potential for producing naphthenic base synthetic oils from coal-based chemicals.展开更多
基金We express our sincere appreciation to the National Natural Science Foundation of China(No.51474113(M.Jing),22279070[L.Wang]and U21A20170[X.He])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang]).And we would like to thank the“Explorer 100”cluster system of Tsinghua National Laboratory for Information Science and Technology for facility support.
文摘Polymer solid-state lithium batteries(SSLB)are regarded as a promising energy storage technology to meet growing demand due to their high energy density and safety.Ion conductivity,interface stability and battery assembly process are still the main challenges to hurdle the commercialization of SSLB.As the main component of SSLB,poly(1,3-dioxolane)(PDOL)-based solid polymer electrolytes polymerized in-situ are becoming a promising candidate solid elec-trolyte,for their high ion conductivity at room temperature,good battery elec-trochemical performances,and simple assembly process.This review analyzes opportunities and challenges of PDOL electrolytes toward practical application for polymer SSLB.The focuses include exploring the polymerization mechanism of DOL,the performance of PDOL composite electrolytes,and the application of PDOL.Furthermore,we provide a perspective on future research directions that need to be emphasized for commercialization of PDOL-based electrolytes in SSLB.The exploration of these schemes facilitates a comprehensive and profound understanding of PDOL-based polymer electrolyte and provides new research ideas to boost them toward practical application in solid-state batteries.
基金gratitude to the National Natural Science Foundation of China(No.22279070,U21A20170,22279071 and 52206263)the Ministry of Science and Technology of China(No.2019YFA0705703 and 2019YFE0100200)The authors thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center(CERCCVC2.0,2016-2020)。
文摘As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes.Although lithium anodes are regarded as the holy grail of lithium batteries,decades of exploration have not led to the successful commercialization of LMBs,due mainly to the challenges related to the inherent properties of lithium metal.To pave the way for further investigation,herein,a comprehensive review focusing on the fundamental science of lithium are provided.Firstly,the natures of lithium atoms and their isotopes,lithium clusters and lithium crystals are revisited,especially their structural and energetic properties.Subsequently,the electrochemical properties of lithium metal are reviewed.Numerous important concepts and scientific questions,including the electronic structure of lithium,influence of high pressure and low temperature on the properties of lithium,factors influencing lithium deposition,generation of lithium dendrites,and electrode potential of lithium in different electrolytes,are explained and analyzed in detail.Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed.
文摘BACKGROUND Synaptotagmins(SYTs)are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones.However,few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy(DR)through Ca2+/glucose transporter-1(GLUT1)and the possible regulatory mechanism of SYTs.AIM To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR.METHODS DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells(ARPE-19).Bioinformatics analysis,reverse transcriptase-polymerase chain reaction,Western blot,flow cytometry,ELISA,HE staining,and TUNEL staining were used for analysis.RESULTS Six differentially expressed proteins(SYT2,SYT3,SYT4,SYT7,SYT11,and SYT13)were found between the DR and control groups,and SYT4 was highly expressed.Hyperglycemia induces SYT4 overexpression,manipulates Ca2+influx to induce GLUT1 fusion with the plasma membrane,promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake,induces ARPE-19 cell apoptosis,and promotes DR progression.Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR,resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane,and these effects were blocked by oe-Parkin treatment.Moreover,dysregulation of the myelin transcription factor 1(Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process,and this process was inhibited in the oe-MYT1-treated group.CONCLUSION Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.
基金Supported by National Natural Science Foundation of China(31760504)China Agriculture Research System of MOF and MARA(CARS-17)Special Fund for the Construction of Modern Agricultural Industrial Technology System in Yunnan Province.
文摘Aiming at the basic and key technical problems in prevention and control of sugarcane white leaf disease(SCWL),this study systematically overcame key technical bottleneck of prevention and control of new SCWL after 10 years of collaborative research,and achieved several innovative achievements.SCWL phytoplasmas newly recorded in China and the new subgroup of SCWL phytoplasmas(16SrXI-D)were discovered for the first time in Yunnan,and the whole genome analysis of the epidemic subgroup was completed.The main transmission source of SCWL pathogens has been identified as infected seed canes,and Tettigoniella viridis and Clovia conifer were newly discovered as vectors for virus transmission.The disease resistance of 25 main varieties was identified,and 10 control varieties were selected.The prevention and control strategy of"emphasizing early warning,strictly carrying out quarantine,blocking the vectors and controlling residual plants"was put forward,and a comprehensive prevention technique was established through integration of various techniques,and standardized technical regulations were formulated for demonstration application.The promotion and application of these achievements have realized scientific prevention and control of SCWL,effectively curbed the spread of SCWL,and ensured the safety of sugarcane producing areas in China,achieving great economic,social and ecological benefits and providing technical support for high-quality development,loss reduction and efficiency improvement of China's sugar industry.
基金the financial support provided by the National Natural Science Foundation of China (nos. U21A20170 [X. He], 22279070 [L. Wang], and 52206263 [Y. Song])the Ministry of Science and Technology of China (no. 2019YFA0705703 [L. Wang])the “Explorer 100” cluster system of Tsinghua National Laboratory for Information Science and Technology for their facility support
文摘Lithium-ion batteries(LIBs)have helped revolutionize the modern world and are now advancing the alternative energy field.Several technical challenges are associated with LIBs,such as increasing their energy density,improving their safety,and prolonging their lifespan.Pressed by these issues,researchers are striving to find effective solutions and new materials for next-generation LIBs.Polymers play a more and more important role in satisfying the ever-increasing requirements for LIBs.Polyimides(PIs),a special functional polymer,possess unparalleled advantages,such as excellent mechanical strength,extremely high thermal stability,and excellent chemical inertness;they are a promising material for LIBs.Herein,we discuss the current applications of PIs in LIBs,including coatings,separators,binders,solid-state polymer electrolytes,and active storage materials,to improve high-voltage performance,safety,cyclability,flexibility,and sustainability.Existing technical challenges are described,and strategies for solving current issues are proposed.Finally,potential directions for implementing PIs in LIBs are outlined.
基金financially supported by the National Natural Science Foundation of China (U1910202, 21978194)the Key Research and Development Program of Shanxi Province (202102090301005)+1 种基金the Fund for Shanxi “1331 Project”the Shanxi Natural Science Foundation for Young Scientists (202103021223064)。
文摘A new category of lithium greases was synthesized by using poly-a-olefin(PAO8) and alkyl-tetralin as base oil, where the alkyl-tetralins were synthesized by the alkylation of tetralin and olefins. The influence of thickener concentration, alkyl-tetralin content and type of blend oils on the rheological and tribological performance of lithium grease was investigated. The microstructures of soap fibers were measured to reveal the structure-property correlations. The concentration of thickener and alkyl-tetralin content obviously affect the lubricating performance of lithium grease, while the molecular structure of alkyltetralin has no obvious impact on their properties. It was found that alkyl-tetralin could significantly enhance the thickening ability of PAO8 base oils, and decrease the amount of thickeners by 1.5%(mass).Lithium greases prepared using 20%(mass) alkyl-tetralin as co-base oil exhibited high colloidal stability,excellent rheological behaviors and tribological properties.
基金This work was funded by the National Natural Science Foundation of China (52073161 and U1564205)the Ministry of Science and Technology of China (No.2019YFE0100200 and 2019YFA0705703)+1 种基金The authors also thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center (CERC-CVC2.0,2016-2020)thank Tsinghua University-Zhangjiagang Joint Institute for Hydrogen Energy and Lithium Ion Battery Technology.
文摘The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic reactions that occurred between the liquid electrolyte and Li-metal anode could be largely inhibited by regulating the Li+-solvation structure.The saturated Li+-solvation species exist in commonly used LiPF 6 liquid electrolyte that needs extra energy to desolvation during Li-electrodeposition.Partial solvation induced high-energy state Li-ions would be more energy favorable during the electron-reduction process,dominating the competition with solvent reduction reactions.The Li-symmetric cells that are cycling at higher temperatures show better performance;the cycled lithium metal anode with metallic lustre and the dendrite-free surface is observed.Theoretical calculation and experimental measurements reveal the existence of high-energy state Li+-solvates species,and their concentration increases with temperature.This study provides insight into the Li+-solvation structure and its electrodeposition characteristics.
基金supported by the National Key R&D Program of China (No. 2021YFA1600703)National Natural Science Foundation of China (No. 12175254)Youth Innovation Promotion Association CAS
文摘The multi-physics instrument(MPI)is the first user cooperative instrument at the China Spallation Neutron Source(CSNS).It was designed to explore the structures of complex materials at multiple scales based on the neutron total scattering technique.This imposes the requirements for the detector,including a high detection efficiency to reduce the measurement time and a large solid angle coverage to cover a wide range of momentum transfers.To satisfy these demands,a large-area array of 3He-filled linear position-sensitive detectors(LPSDs)was constructed,each with a diameter of 1 inch and pressure of 20 atm.It uses an orbicular layout of the detector and an eight-pack module design for the arrangement of 3He LPSDs,covering a range of scattering angles from 3°to 170°with a total detector area of approximately 7 m2.The detector works in air,which is separated from the vacuum environment to facilitate installation and maintenance.The characteristics of the MPI detector were investigated through Monte Carlo(MC)simulations using Geant4 and experimental measurements.The results suggest that the detectors are highly efficient in the wavelength range of the MPI,and an efficiency over 25%is achievable for above 0.1 A neutrons.A minimal position resolution of 6.4 mm full width at half maximum(FWHM)along the tube length was achieved at a working voltage of 2200 V,and a deviation below 2 mm between the real and measured positions was attained in the beam experiment.The detector module exhibited good consistency and an excellent counting rate capacity of up to 80 kHz,which satisfied the requirements of experiments with a high event rate.Observations of its operation over the past year have shown that the detector works steadily in sample experiments,which allows the MPI to serve the user program successfully.
基金the National Natural Science Foundation of China(Grant Nos.11875273,U1832111,61964001,and 12275049)the Science Foundation of Guangdong Province of China(Grant No.2020B1515120025)+3 种基金the Neutron Physics Laboratory Funding of China Academy of Engineering Physics(Grant No.2018BC03)the General Project of Jiangxi Province Key Research and Development Program(Grant No.20212BBG73012)the Key Scientific Research Projects of Henan Higher Education Institutions(Grant Nos.23A490002 and 24A490001)the Engineering Research Center of Nuclear Technology Application(Grant No.HJSJYB2021-4)。
文摘The energy-resolved neutron imaging spectrometer(ERNI)will be installed in 2022 according to the spectrometer construction plan of the China Spallation Neutron Source(CSNS).The instrument requires neutron detectors with the coverage area of approximately 4 m^(2)in 5°-170°neutron diffraction angle.The neutron detection efficiency needs to be better than 40%at 1 A neutron wavelength.The spatial resolution should be better than 3 mm×50 mm in the horizontal and vertical directions respectively.We develop a one-dimensional scintillator neutron detector which is composed of the^(6)Li F/Zn S(Ag)scintillation screens,the wavelength-shifting fiber(WLSF)array,the silicon photomultipliers(Si PMs),and the self-designed application-specific integrated circuit(ASIC)readout electronics.The pixel size of the detector is designed as 3 mm×50 mm,and the neutron-sensitive area is 50 mm×200 mm.The performance of the detector prototype is measured using neutron beam 20#of the CSNS.The maximum counting rate of 247 k Hz,and the detection efficiency of63%at 1.59 A are obtained.The test results show that the performance of the detector fulfills the physical requirements of the ERNI under construction at the CSNS.
基金The authors would like to express their gratitude to Prof.Kai Xu and his research and development team from Shanghai Jiao Tong University,Shanghai,China,for their invaluable technical support of this study.This research was funded by the National Key Research and Development Program of China(Grant No.2022YFB4700904 to Wang L)Research-Oriented Physicians'Innovative Transformation Training Program of Development Center,Shanghai Shenkang Hospital,Shanghai,China(Grant No.SHDC2022CRS010B to Tang S).
文摘Objective This prospective single-arm clinical trial aimed to evaluated the feasibility and safety of the application of the SHURUI system(Beijing Surgerii Technology Co.,Ltd.,Beijing,China),a novel purpose-built robotic system,in single-port robotic radical prostatectomy.Methods Sixteen patients diagnosed with prostate cancer were prospectively enrolled in and underwent robotic radical prostatectomy from October 2021 to August 2022 by the SHURUI single-port robotic surgical system.The demographic and baseline data,surgical,oncological,and functional outcomes as well as follow-up data were recorded.Results The mean operative time was 226.3(standard deviation[SD]52.0)min,and the mean console time was 183.4(SD 48.3)min,with the mean estimated blood loss of 116.3(SD 90.0)mL.The mean length of postoperative hospital stay was 4.50(SD 0.97)days.Two patients had postoperative complications(Clavien-Dindo Grade II),and both patients improved after conservative treatment.All patients’postoperative prostate-specific antigen levels decreased to below 0.2 ng/mL 1 month after discharge.The mean prostate-specific antigen level further decreased to a mean of 0.0219(SD 0.0641)ng/mL 6 months after surgery.Thirty days postoperatively,12 out of 16 patients reported using no more than one urinary pad per day,and all patients reported satisfactory urinary control without the need for pads 6 months after surgery.Conclusion The SHURUI system is safe and feasible in performing radical prostatectomy via both transperitoneal and extraperitoneal approaches.Tumor control and urinary continence were satisfying for patients enrolled in.The next phase involves conducting a large-scale,multicenter randomized controlled trial to thoroughly assess the effectiveness and safety of the new technology in a broader population.
基金financially supported by the National Natural Science Foundation of China(U1910202,21978194,22078219 and 22072173)the Fund for Shanxi“1331 Project”the Key Research and Development Program of Shanxi Province(202102090301005)。
文摘Naphthenic base oil is an important lubricating base oil and very scarce in the global petroleum resources.Herein,a series of alkylated tetralin fluids similar to naphthenic base oils were produced by the alkylation of tetralin and a-olefins(n-hexene,n-octene,n-decene)with ionic liquid Et_3NHCl/AlCl_(3)as the catalyst,where the applied raw materials are totally derived from the coal chemical industry.The product composition could be controlled by adjusting the feeding ratio of tetralin and olefin.The synthetic fluids were evaluated as lubricating base oils to reveal the structure-property correlations.Their principal physicochemical and tribological properties depend on the chain-length of a-olefins and the number of alkyl groups onto the aromatic rings.Bis-(octyl-or decyl-)alkyl tetralin exhibited good properties in terms of viscosity,thermo-oxidation stability and pour point,as well as friction-reducing and anti-wear performance,showing great potential for producing naphthenic base synthetic oils from coal-based chemicals.