Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured...Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygen in vitro. MTT assay, neurosphere number, and immunofluorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration (120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell prolif- eration and neuronal differentiation. Our findings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.展开更多
Agriculture is the foundation of social development.Under the pressure of population growth,natural disasters,environmental pollution,climate change,and food safety,the interdisciplinary"new agriculture"is b...Agriculture is the foundation of social development.Under the pressure of population growth,natural disasters,environmental pollution,climate change,and food safety,the interdisciplinary"new agriculture"is becoming an important trend of modern agriculture.In fact,new agriculture is not only the foundation of great health and new energy sources,but is also the cornerstone of national food security,energy security,and biosafety.Hydrogen agronomy focuses mainly on the mechanism of hydrogen gas(H2)biology effects in agriculture,and provides a theoretical foundation for the practice of hydrogen agriculture,a component of the new agriculture.Previous research on the biological effects of H2 focused chiefly on medicine.The mechanism of selective antioxidant is the main theoretical basis of hydrogen medicine.Subsequent experiments have demonstrated that H2 can regulate the growth and development of plant crops,edible fungus,and livestock,and enhance the tolerance of these agriculturally important organisms against abiotic and biotic stresses.Even more importantly,H2 can regulate the growth and development of crops by changing the soil microbial community composition and structure.Use of H2 can also improve the nutritional value and postharvest quality of agricultural products.Researchers have also shown that the biological functions of molecular hydrogen are mediated by modulating reactive oxygen species(ROS),nitric oxide(NO),and carbon monoxide(CO)signaling cascades in plants and microbes.This review summarizes and clarifies the history of hydrogen agronomy and describes recent progress in the field.We also argue that emerging hydrogen agriculture will be an important direction in the new agriculture.Further,we discuss several scientific problems in hydrogen agronomy,and suggest that the future of hydrogen agronomy depends on contributions by multiple disciplines.Important future research directions of hydrogen agronomy include hydrogen agriculture in special environments,such as islands,reefs,aircraft,and outer space.展开更多
基金supported by the Science Foundation of Jining Science and Technology Bureau of China,No.2012jnjc07
文摘Hypoxia promotes proliferation and differentiation of neural stem cells from embryonic day 12 rat brain tissue, but the concentration and time of hypoxic preconditioning are controversial. To address this, we cultured neural stem cells isolated from embryonic day 14 rat cerebral cortex in 5% and 10% oxygen in vitro. MTT assay, neurosphere number, and immunofluorescent staining found that 5% or 10% oxygen preconditioning for 72 hours improved neural stem cell viability and proliferation. With prolonged hypoxic duration (120 hours), the proportion of apoptotic cells increased. Thus, 5% oxygen preconditioning for 72 hours promotes neural stem cell prolif- eration and neuronal differentiation. Our findings indicate that the optimal concentration and duration of hypoxic preconditioning for promoting proliferation and differentiation of neural stem cells from the cerebral cortex are 5% oxygen for 72 hours.
基金the National Natural Science Foundation of China(No.31972396)the Foshan Agriculture Science and Technology Project(Foshan City Budget,No.140,2019)the Funding from Center of Hydrogen Science,Shanghai Jiao Tong University,China。
文摘Agriculture is the foundation of social development.Under the pressure of population growth,natural disasters,environmental pollution,climate change,and food safety,the interdisciplinary"new agriculture"is becoming an important trend of modern agriculture.In fact,new agriculture is not only the foundation of great health and new energy sources,but is also the cornerstone of national food security,energy security,and biosafety.Hydrogen agronomy focuses mainly on the mechanism of hydrogen gas(H2)biology effects in agriculture,and provides a theoretical foundation for the practice of hydrogen agriculture,a component of the new agriculture.Previous research on the biological effects of H2 focused chiefly on medicine.The mechanism of selective antioxidant is the main theoretical basis of hydrogen medicine.Subsequent experiments have demonstrated that H2 can regulate the growth and development of plant crops,edible fungus,and livestock,and enhance the tolerance of these agriculturally important organisms against abiotic and biotic stresses.Even more importantly,H2 can regulate the growth and development of crops by changing the soil microbial community composition and structure.Use of H2 can also improve the nutritional value and postharvest quality of agricultural products.Researchers have also shown that the biological functions of molecular hydrogen are mediated by modulating reactive oxygen species(ROS),nitric oxide(NO),and carbon monoxide(CO)signaling cascades in plants and microbes.This review summarizes and clarifies the history of hydrogen agronomy and describes recent progress in the field.We also argue that emerging hydrogen agriculture will be an important direction in the new agriculture.Further,we discuss several scientific problems in hydrogen agronomy,and suggest that the future of hydrogen agronomy depends on contributions by multiple disciplines.Important future research directions of hydrogen agronomy include hydrogen agriculture in special environments,such as islands,reefs,aircraft,and outer space.