期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Phase field lattice Boltzmann model for non-dendritic structure formation in aluminum alloy from LSPSF machine 被引量:6
1
作者 An-shan YU Xiang-jie YANG hong-min guo 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期559-570,共12页
The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and m... The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally. 展开更多
关键词 numerical simulation non-dendritic structure low superheat pouring with shearing field(LSPSF) aluminum alloy phase field method lattice Boltzmann method
下载PDF
Shear bands of as-cast and semi-solid Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)bulk metallic glass matrix composites 被引量:1
2
作者 Xin-hua Huang Lin-hao Zhu +2 位作者 hong-min guo Hua-lan Jin Xiang-jie Yang 《China Foundry》 SCIE CAS 2021年第1期75-82,共8页
The as-cast Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)bulk metallic glass matrix composites(BMGMCs)were fabricated using a copper mold suction casting method.Then,the semi-solid BMGMC samples were obtained following an isother... The as-cast Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)bulk metallic glass matrix composites(BMGMCs)were fabricated using a copper mold suction casting method.Then,the semi-solid BMGMC samples were obtained following an isothermal treatment(heating at 900°C for 10 min,then cooling with water).The microstructure and compression property were investigated by scanning electronic microscopy(SEM)and universal mechanical tester.As a result of the isothermal treatment,the crystal shapes change from fine,granular,and dendritic to spherical or vermicular,and the average crystal size of the as-cast and semi-solid samples is 2.2μm and 18.1μm,respectively.The plasticity increases from 5.31%in the as-cast to 10.23%in the semi-solid samples,with an increase of 92.66%.The shear bands from different areas of the side surfaces of as-cast and semisolid compression fracture samples were observed.The characteristic changes of multiplicity,bend,branch and intersection of shear bands in different areas indicate that the deformation of as-cast and semi-solid samples is non-uniform during compression.It is found that poor plasticity of the as-cast samples or good plasticity of the semi-solid samples are reflected by characteristics of the shear bands.The semi-solid isothermal treatment improves the plasticity by forming large crystals which can block the expansion of shear bands and promote the multiplicity of shear bands. 展开更多
关键词 shear bands Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14) AS-CAST SEMI-SOLID plasticity
下载PDF
Effect of different bottom blowing elements on stirring characteristics of molten bath in converter
3
作者 Ming Lv Shuang-ping Chen +2 位作者 hong-min guo Yi-jie Hao Xiang-dong Xing 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期368-376,共9页
The bottom blowing element is the key equipment to ensure the bottom blowing effect of the converter.Three types of bottom blowing elements,dispersive type(D1),double circular seam(D2)and straight cylinder type(D3),we... The bottom blowing element is the key equipment to ensure the bottom blowing effect of the converter.Three types of bottom blowing elements,dispersive type(D1),double circular seam(D2)and straight cylinder type(D3),were built,and the effects of bottom blowing element type on molten bath flow,wall erosion and furnace bottom erosion were simulated.It was found that when the bottom blowing elements of dispersive type(D1)and double circular seam(D2)were used,the dead zone area in the lower part of the molten bath was smaller,and the high-speed zone area was larger;therefore,the stirring effect on the bottom melt was better.When the straight cylinder type(D3)bottom blowing element was used,the gas penetrated the molten bath at a faster rate to reach the surface of molten bath and failed to disperse in the bottom molten bath,and the wall shear stress near the nozzle outlet was larger.When argon was blown by three different bottom blowing elements,the area of the wall shear stress greater than 3 Pa was 4.8,5.6 and 8.7 cm2,respectively,within 0.2 m of the bottom blowing nozzle outlet. 展开更多
关键词 Converter steelmaking Bottom blowing element Molten bath stirring Wall erosion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部