The Chinese Hα Solar Explorer(CHASE), dubbed “Xihe”—Goddess of the Sun, was launched on October 14, 2021 as the first solar space mission of China National Space Administration(CNSA). The CHASE mission is designed...The Chinese Hα Solar Explorer(CHASE), dubbed “Xihe”—Goddess of the Sun, was launched on October 14, 2021 as the first solar space mission of China National Space Administration(CNSA). The CHASE mission is designed to test a newly developed satellite platform and to acquire the spectroscopic observations in the Hα waveband. The Hα Imaging Spectrograph(HIS)is the scientific payload of the CHASE satellite. It consists of two observational modes: raster scanning mode and continuum imaging mode. The raster scanning mode obtains full-Sun or region-of-interest spectral images from 6559.7 to 6565.9 ? and from 6567.8 to 6570.6 ? with 0.024 ? pixel spectral resolution and 1 min temporal resolution. The continuum imaging mode obtains photospheric images in continuum around 6689 ? with the full width at half maximum of 13.4 ?. The CHASE mission will advance our understanding of the dynamics of solar activity in the photosphere and chromosphere. In this paper, we present an overview of the CHASE mission including the scientific objectives, HIS instrument overview, data calibration flow, and first results of on-orbit observations.展开更多
The Hα line is an important optical line in solar observations containing the information from the photosphere to the chromosphere. To study the mechanisms of solar eruptions and the plasma dynamics in the lower atmo...The Hα line is an important optical line in solar observations containing the information from the photosphere to the chromosphere. To study the mechanisms of solar eruptions and the plasma dynamics in the lower atmosphere, the Chinese Hα Solar Explorer(CHASE) was launched into a Sun-synchronous orbit on October 14, 2021. The scientific payload of the CHASE satellite is the Hα Imaging Spectrograph(HIS). The CHASE/HIS acquires, for the first time, seeing-free Hα spectroscopic observations with high spectral and temporal resolutions. It consists of two observational modes. The raster scanning mode provides full-Sun or region-of-interest spectra at Hα(6559.7-6565.9 ?) and Fe I(6567.8-6570.6 ?) wavebands. The continuum imaging mode obtains full-Sun photospheric images at around 6689 ?. In this paper, we present detailed calibration procedures for the CHASE/HIS science data, including the dark-field and flat-field correction, slit image curvature correction, wavelength and intensity calibration, and coordinate transformation. The higher-level data products can be directly used for scientific research.展开更多
The Hα imaging spectrograph(HIS) is the scientific payload of the first solar space mission, the Chinese Hα solar explorer(CHASE), supported by the China National Space Administration(CNSA). The CHASE/HIS achieves, ...The Hα imaging spectrograph(HIS) is the scientific payload of the first solar space mission, the Chinese Hα solar explorer(CHASE), supported by the China National Space Administration(CNSA). The CHASE/HIS achieves, for the first time in space, Hα spectroscopic observations with high spectral and temporal resolutions. Separate channels for the raster scanning mode(RSM) and continuum imaging mode(CIM) are integrated into one, and a highly integrated design is achieved through multiple folding of the optical path and ultra-light miniaturized components. The design of HIS implements a number of key technologies such as high-precision scanning of the optical field of view(FOV), high-precision integrated manufacturing inspection, a large-tolerance pre-filter window, and full-link solar radiation calibration. The HIS instrument has a pixel spectral resolution of 0.024 ? and can complete a full-Sun scanning within 46 s.展开更多
基金supported by China National Space Administration(CNSA)。
文摘The Chinese Hα Solar Explorer(CHASE), dubbed “Xihe”—Goddess of the Sun, was launched on October 14, 2021 as the first solar space mission of China National Space Administration(CNSA). The CHASE mission is designed to test a newly developed satellite platform and to acquire the spectroscopic observations in the Hα waveband. The Hα Imaging Spectrograph(HIS)is the scientific payload of the CHASE satellite. It consists of two observational modes: raster scanning mode and continuum imaging mode. The raster scanning mode obtains full-Sun or region-of-interest spectral images from 6559.7 to 6565.9 ? and from 6567.8 to 6570.6 ? with 0.024 ? pixel spectral resolution and 1 min temporal resolution. The continuum imaging mode obtains photospheric images in continuum around 6689 ? with the full width at half maximum of 13.4 ?. The CHASE mission will advance our understanding of the dynamics of solar activity in the photosphere and chromosphere. In this paper, we present an overview of the CHASE mission including the scientific objectives, HIS instrument overview, data calibration flow, and first results of on-orbit observations.
基金supported by China National Space Administration。
文摘The Hα line is an important optical line in solar observations containing the information from the photosphere to the chromosphere. To study the mechanisms of solar eruptions and the plasma dynamics in the lower atmosphere, the Chinese Hα Solar Explorer(CHASE) was launched into a Sun-synchronous orbit on October 14, 2021. The scientific payload of the CHASE satellite is the Hα Imaging Spectrograph(HIS). The CHASE/HIS acquires, for the first time, seeing-free Hα spectroscopic observations with high spectral and temporal resolutions. It consists of two observational modes. The raster scanning mode provides full-Sun or region-of-interest spectra at Hα(6559.7-6565.9 ?) and Fe I(6567.8-6570.6 ?) wavebands. The continuum imaging mode obtains full-Sun photospheric images at around 6689 ?. In this paper, we present detailed calibration procedures for the CHASE/HIS science data, including the dark-field and flat-field correction, slit image curvature correction, wavelength and intensity calibration, and coordinate transformation. The higher-level data products can be directly used for scientific research.
基金supported by the China National Space Administration(CNSA)。
文摘The Hα imaging spectrograph(HIS) is the scientific payload of the first solar space mission, the Chinese Hα solar explorer(CHASE), supported by the China National Space Administration(CNSA). The CHASE/HIS achieves, for the first time in space, Hα spectroscopic observations with high spectral and temporal resolutions. Separate channels for the raster scanning mode(RSM) and continuum imaging mode(CIM) are integrated into one, and a highly integrated design is achieved through multiple folding of the optical path and ultra-light miniaturized components. The design of HIS implements a number of key technologies such as high-precision scanning of the optical field of view(FOV), high-precision integrated manufacturing inspection, a large-tolerance pre-filter window, and full-link solar radiation calibration. The HIS instrument has a pixel spectral resolution of 0.024 ? and can complete a full-Sun scanning within 46 s.