期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Understanding the molecular structure of HSW coal at atomic level:A comprehensive characterization from combined experimental and computational study 被引量:4
1
作者 Wei Feng Zhuangmei Li +3 位作者 Hongfeng Gao Qiang Wang hongcun bai Ping Li 《Green Energy & Environment》 SCIE CSCD 2021年第1期150-159,共10页
In this work,the coal samples from Hongshiwan(HSW)mining area,Ningxia,northwest of China,are characterized by using several modern materials characterization techniques,such as proximate and ultimate analyses,solid st... In this work,the coal samples from Hongshiwan(HSW)mining area,Ningxia,northwest of China,are characterized by using several modern materials characterization techniques,such as proximate and ultimate analyses,solid state 13C nuclear magnetic resonance(13C NMR),X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy(FT-IR).Then the key information about elements,valence,and chemical bonding for coal molecular structural construction is obtained.The results reveal that the main structure of HSW coal has 75.96%aromatic skeleton in mass.The ratio of aromatic bridge carbon to aromatic peripheral carbon of HSW coal is 0.315,indicating more naphthalene than benzene and anthracene in coal structures.Oxygen predominantly presents in the forms of ether(C–O),carbonyl(C=O)and carboxyl(–COO).Nitrogen presents in the forms of both pyridine and pyrrole.Methyl(–CH_(3))group is predominant in cyclic and aliphatic hydrocarbons.Based on obtained structural information and the approaches of average molecular structure,the single molecular formula of HSW coal is defined as C_(221)H_(148)O_(28)N_(2),with a molecular weight of 3142.32.Also,the 2D and 3D molecular model of HSW coal are built with computeraided modeling.The model is optimized and further verified by FT-IR and^(13)C NMR spectra simulation with quantum chemical calculations.Besides,a more complicated structure of complex model for HSW coal containing 10 single-molecules is also obtained.Therefore,molecular structure of HSW coal has been comprehensively depicted and understood at atomic level from both experimental and quantum chemical approaches in the current work. 展开更多
关键词 COAL Structure Model Molecular simulation DFT calculations
下载PDF
Petroleum coke conversion behavior in catalyst-assisted chemical looping combustion 被引量:3
2
作者 Xianyu Liu Huijun Ge +6 位作者 Shiwei Ma Shangyi Yin Ping Lu Laihong Shen hongcun bai Wei Wang Tao Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2417-2424,共8页
Efficiently using petroleum coke as fuel and reducing carbon emission meanwhile have become attractive in oil processing industry.The paper is focused on the application of Chemical Looping Combustion(CLC)with petrole... Efficiently using petroleum coke as fuel and reducing carbon emission meanwhile have become attractive in oil processing industry.The paper is focused on the application of Chemical Looping Combustion(CLC)with petroleum coke,with the purpose of investigating its combustion performance and effects of potassium.Some experiments were performed in a laboratory scale fluidized bed facility with a natural manganese-based oxygen carrier.Experimental results indicated that the coke conversion is very sensitive to reaction temperature.The pre sent natural manganese-based oxygen carrier decorated by K has little effect on the improvement of coke conversion.XRD,SEM-EDX,and H2-TPR were adopted to characterize the reacted oxygen carrier samples.After being decorated by K,the oxygen carrier's capacity of transferring oxygen was decrea sed.A calcination temperature above the melting point of K2 CO3(891℃)shows better oxygen transfer reactivity in comparison to the one calcined at a lower temperature.The natural oxygen carrier used in the work has a high content of Si,which can easily react with K to form K(FeSi2 O6).Further,irrespective of reaction temperature,the coke conversion can be significantly enhanced by decorating the coke with K,with a demonstration of remarkably shorter reaction time,faster average coke gasification rate and higher average carbon conversion rate. 展开更多
关键词 Chemical looping combustion Oxygen carrier CATALYST COKE
下载PDF
Numerical simulations and comparative analysis of two- and three-dimensional circulating fluidized bed reactors for CO2 capture 被引量:1
3
作者 Yefeng Zhou Yifan Han +7 位作者 Yujian Lu hongcun bai Xiayi Hu Xincheng Zhang Fanghua Xie Xiao Luo Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期2955-2967,共13页
Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.... Carbon dioxide(CO2),the main gas emitted from fossil burning,is the primary contributor to global warming.Circulating fluidized bed reactor(CFBR)is proved as an energy-efficient method for post-combustion CO2 capture.The numerical simulation by computational fluid dynamics(CFD)is believed as a promising tool to study CO2 adsorption process in CFBR.Although three-dimensional(3D)simulations were proved to have better predicting performance with the experimental results,two-dimensional(2D)simulations have been widely reported for qualitative and quantitative studies on gas-solid behavior in CFBR for its higher computational efficiency recently.However,the discrepancies between 2D and 3D simulations have rarely been evaluated by detailed study.Considering that the differences between the 2D and 3D simulations will vary substantially with the changes of independent operating conditions,it is beneficial to lower computational costs to clarify the effects of dimensionality on the numerical CO2 adsorption runs under various operating conditions.In this work,the comparative analysis for CO2 adsorption in 2D and 3D simulations was conducted to enlighten the effects of dimensionality on the hydrodynamics and reaction behaviors,in which the separation rate,species distribution and hydrodynamic characteristics were comparatively studied for both model frames.With both accuracy and computational costs considered,the viable suggestions were provided in selecting appropriate model frame for the studies on optimization of operating conditions,which directly affect the capture and energy efficiencies of cyclic CO2 capture process in CFBR. 展开更多
关键词 Two-and three-dimensional simulations Circulating fluidized bed reactor Carbon dioxide adsorption Computational fluid dynamics Operating conditions
下载PDF
Insights into the intrinsic interaction between series of C1 molecules and surface of NiO oxygen carriers involved in chemical looping processes
4
作者 Jinpeng Zhang Hongfeng Gao +4 位作者 Nini Yuan QiangWang YuhuaWu Yanli Sun hongcun bai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第11期2771-2777,共7页
Understanding and modulating the interaction between various reactive molecules and oxygen carriers are the key issue to achieve process intensification of chemical looping technology.C1 chemical molecules play an imp... Understanding and modulating the interaction between various reactive molecules and oxygen carriers are the key issue to achieve process intensification of chemical looping technology.C1 chemical molecules play an important role in many reactions involved with chemical looping processes.However,up to now,there is still a lack of systematic and in-depth understanding of the adsorption mechanism of C1 molecules on the surface of oxygen carriers(OCs).In this work,the intrinsic interaction between a series of C1 molecules composed of CH4,CO,CO2,CH3OH,HCHO and HCOOH and surface of Ni O OCs in the chemical looping process have been studied using density functional theory calculations.Various adsorption configurations of C1 molecules and also different adsorption sites of Ni O have been considered.The structural features of stable configuration of C1 molecules on the surface of NiO OCs have been obtained.Further,the interacted sites,types and strengths of C1 molecules on the surface of NiO have been directly pictured by the independent gradient model methods.Also,the nature of the interaction between C1 molecule and Ni O surface has been investigated with the aid of energy decomposition analysis from a quantitative view. 展开更多
关键词 Oxygen carrier Chemical looping C1 chemistry Adsorption Molecular modeling DFT
下载PDF
Suppressing byproduct formation for high selective CO_(2) reduction over optimized Ni/TiO_(2) based catalysts
5
作者 Danyang Li Ruidong Xu +9 位作者 Roong Jien Wong Xing Zhu Dong Tian Lei Jiang Qingjie Guo hongcun bai Linan Huang Wen Liu Hua Wang Kongzhai Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期465-478,I0013,共15页
One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the s... One of the challenges for catalytic CO_(2)reduction is to control product selectivity,and new findings that can modify selectivity would be transformative.Herein,two kinds of TiO_(2)(homemade and commercial)with the same crystal phase but different surface properties are chosen as supports to prepare Ni-based catalysts for CO_(2)reduction,which show distinctly different product selectivity for CO_(2)reduction to CH_(4) or CO,as well as the CO_(2)conversion.The catalysts based on the homemade TiO_(2)support are highly selective for CH_(4) formation,while the latter ones are about 100%selective for CO formation under the same reaction conditions.In addition,the former ones are much active(more than 3 times)than the latter ones.We found that the collaborative contribution of Ti^(3+)and Ni^(2+)species and the electronic metal-support interactions effect maybe the main driving force behind for determining the product selectivity.Methane is almost exclusively produced over the catalysts with abundant Ti^(3+)and Ni^(2+)species and greater electronic metal-support interaction,otherwise,it will give priority to CO generation.The addition of CeO_(2)can reduce the Ni particle size and improve the dispersion of Ni nanoparticles,as well as create more Ti^(3+)species,contributing to the enhancement of CO_(2)conversion,but shows a negligible effect on product selectivity.Furthermore,the in situ DRIFT experiments and kinetic experiments indicate that the CO route is probably involved in the CO_(2)reduction process over the homemade Ni-CeO_(2)/TiO_(2)-CO catalyst with abundant Ti^(3+)and Ni^(2+)species and a strong electronic transform effect. 展开更多
关键词 CO_(2)reduction Ni-based catalysts TiO_(2)support Product selectivity Surface and interface properties
下载PDF
Simulation study on the gasification process of Ningdong coal with iron-based oxygen carrier
6
作者 Fei Xie Mei An +3 位作者 Ping Li Xiude Hu hongcun bai Qingjie Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期326-334,共9页
Chemical looping gasification(CLG) of Ningdong coal by using Fe_(2) O_(3) as the oxygen carriers(OCs) was studied,and the gasification characteristics were obtained.A computation fluid dynamics(CFD) model based on Eul... Chemical looping gasification(CLG) of Ningdong coal by using Fe_(2) O_(3) as the oxygen carriers(OCs) was studied,and the gasification characteristics were obtained.A computation fluid dynamics(CFD) model based on Eulerian--Lagrangian multiphase framework was established,and a numerical simulation the coal chemical looping gasification processes in fuel reactor(FR) was investigated.In addition,the heterogeneous reactions,homogeneous reactions and Fe_(2) O_(3) oxygen carriers' reduction reactions were considered in the gasification process.The characteristics of gas flow and gasification in the FR were analyzed and it was found that the experiment results were consistent with the simulation values.The results show that when the O/C mole rate was 0.5:1,the gasification temperature was 900℃ and the water vapor volume flow rate was 2.2 ml·min^(-1),the mole fraction of syngas reached a maximum value of the experimental result and simulation value were 71.5% and 70.2%,respectively.When the O/C mole rate was 0.5:1,the gasification temperature was 900℃,and the water vapor volume flow was 1.8 ml·min^(-1);the gasification efficiency reached the maximum value was 62.2%,and the maximum carbon conversion rate was 84.0%. 展开更多
关键词 Chemical looping gasification Fuel reactor Gasification characteristics Fe_(2)O_(3)oxygen carrier
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部