Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F....Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.展开更多
Hyphal fusion(anastomosis)is a common process serving many important functions at various developmental stages in the life cycle of ascomycetous fungi.However,the biological roles and molecular mechanisms in plant pat...Hyphal fusion(anastomosis)is a common process serving many important functions at various developmental stages in the life cycle of ascomycetous fungi.However,the biological roles and molecular mechanisms in plant pathogenic fungi were widely unknown.In this study,a hyphal fusion protein FpHam-2 was screened from a T-DNA insertion mutant library of Fusarium pseudograminearum,and FpHam-2 interacts with another 2 hyphal fusion protein homologues FpHam-3 and FpHam-4.Each of these 3 genes deletion mutant revealed in similar defective phenotypes compared with the WT and complemented strains,including reduction in growth rate,defects in hyphal fusion and conidiation,more sensitive for cell membrane,cell wall and oxidative stress responses,and decreased in virulence.The yeast two-hybrid assay was used to identify that FpHam-2 interacts with 3 autophagy-related proteins,including FpAtg3,FpAtg28 and FpAtg33.Furthermore,FpHam-2-deletion mutant showed decreased accumulation of autophagic bodies in hypha.In conclusion,FpHam-2,FpHam-3 and FpHam-4 have an essential role for hyphal fusion and regulating the growth,conidiation and virulence in F.pseudograminearum.展开更多
Whitefly-transmitted begomoviruses are economically important plant pathogens that cause severe problems in many crop plants,such as tomato,papaya,cotton,and tobacco.Tomato yellow leaf curl virus(TYLCV)is a typical mo...Whitefly-transmitted begomoviruses are economically important plant pathogens that cause severe problems in many crop plants,such as tomato,papaya,cotton,and tobacco.Tomato yellow leaf curl virus(TYLCV)is a typical monopartite begomovirus that has been extensively studied,but methods that can efficiently control begomoviruses are still scarce.In this study,we combined artificial microRNA(amiRNA)-mediated silencing technology and clay nanosheetmediated delivery by spraying and developed a method for efficiently preventing TYLCV infection in tomato plants.We designed three amiRNAs that target different regions of TYLCV to silence virus-produced transcripts.Three plant expression vectors expressing pre-amiRNAs were constructed,and recombinant plasmid DNAs(pDNAs)were loaded onto nontoxic and degradable layered double hydroxide(LDH)clay nanosheets.LDH nanosheets containing multiple pDNAs were sprayed onto plant leaves.We found that the designed amiRNAs were significantly accumulated in leaves 7 days after spraying,while the pDNAs were sustainably detected for 35 days after the spray,suggesting that the LDH nanosheets released pDNAs in a sustained manner,protected pDNAs from degradation and efficiently delivered pDNAs into plant cells.Importantly,when the LDH nanosheets coated with pDNAs were sprayed onto plants infected by TYLCV,both the disease severity and TYLCV viral concentration in sprayed plants were significantly decreased during the 35 days,while the levels of H_(2)O_(2) were significantly increased in those plants.Taken together,these results indicate that LDH nanosheets loaded with pDNAs expressing amiRNAs can be a sustainable and promising tool for begomovirus control.展开更多
Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter.Apple(Malus domestica Borkh.)is a cold-tolerant fruit tree,and the cold tolerance of its bark is import...Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter.Apple(Malus domestica Borkh.)is a cold-tolerant fruit tree,and the cold tolerance of its bark is important for its survival at low temperatures.However,little is known about the gene activity related to its freezing tolerance.To better understand the gene expression and regulation properties of freezing tolerance in dormant apple trees,we analyzed the transcriptomic divergences in the bark from 1-year-old branches of two apple cultivars,“Golden Delicious”(G)and“Jinhong”(H),which have different levels of cold resistance,under chilling and freezing treatments.“H”can safely overwinter below−30℃in extremely low-temperature regions,whereas“G”experiences severe freezing damage and death in similar environments.Based on 28 bark transcriptomes(from the epidermis,phloem,and cambium)from 1-year-old branches under seven temperature treatments(from 4 to−29°C),we identified 4173 and 7734 differentially expressed genes(DEGs)in“G”and“H”,respectively,between the chilling and freezing treatments.A gene coexpression network was constructed according to this expression information using weighted gene correlation network analysis(WGCNA),and seven biologically meaningful coexpression modules were identified from the network.The expression profiles of the genes from these modules suggested the gene regulatory pathways that are responsible for the chilling and freezing stress responses of“G”and/or“H.”Module 7 was probably related to freezing acclimation and freezing damage in“H”at the lower temperatures.This module contained more interconnected hub transcription factors(TFs)and cold-responsive genes(CORs).Modules 6 and 7 contained C-repeat binding factor(CBF)TFs,and many CBF-dependent homologs were identified as hub genes.We also found that some hub TFs had higher intramodular connectivity(KME)and gene significance(GS)than CBFs.Specifically,most hub TFs in modules 6 and 7 were activated at the beginning of the early freezing stress phase and maintained upregulated expression during the whole freezing stress period in“G”and“H”.The upregulation of DEGs related to methionine and carbohydrate biosynthetic processes in“H”under more severe freezing stress supported the maintenance of homeostasis in the cellular membrane.This study improves our understanding of the transcriptional regulation patterns underlying freezing tolerance in the bark of apple branches.展开更多
Buildings contribute to almost 30%of total energy consumption worldwide.Developing building energy modeling programs is of great significance for lifecycle building performance assessment and optimization.Advances in ...Buildings contribute to almost 30%of total energy consumption worldwide.Developing building energy modeling programs is of great significance for lifecycle building performance assessment and optimization.Advances in novel building technologies,the requirements of high-performance computation,and the demands for multi-objective models have brought new challenges for building energy modeling software and platforms.To meet the increasing simulation demands,DeST 3.0,a new-generation building performance simulation platform,was developed and released.The structure of DeST 3.0 incorporates four simulation engines,including building analysis and simulation(BAS)engine,HVAC system engine,combined plant simulation(CPS)engine,and energy system(ES)engine,connected by air loop and water loop balancing iterations.DeST 3.0 offers numerous new simulation features,such as advanced simulation modules for building envelopes,occupant behavior and energy systems,cross-platform and compatible simulation kernel,FMI/FMU-based co-simulation functionalities,and high-performance parallel simulation architecture.DeST 3.0 has been thoroughly evaluated and validated using code verification,inter-program comparison,and case-study calibration.DeST 3.0 has been applied in various aspects throughout the building lifecycle,supporting building design,operation,retrofit analysis,code appliance,technology adaptability evaluation as well as research and education.The new generation building simulation platform DeST 3.0 provides an efficient tool and comprehensive simulation platform for lifecycle building performance analysis and optimization.展开更多
Intraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders,collectively termed as tauopathies,including the most common Alzheimer's disease(AD).T...Intraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders,collectively termed as tauopathies,including the most common Alzheimer's disease(AD).Therefore,selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies.Here,we designed and synthesized a novel DEPhosphorylation TArgeting Chimera(DEPTAC)to specifically facilitate the binding of tau to Ba-subunit-contalning protein phosphatase 2A(PP2A-Ba),the most active tau phosphatase in the brain.The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo.Further studies revealed that DEPTAC significantly improved microtubule assembly,neurite plasticity,and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368.Our data provide a strategy for selective removal of the hyperphosphorylated tau,which sheds new light for the targeted therapy of AD and related-tauopathies.展开更多
Increasing evidence suggests that mitogen-activated protein kinase(MAPK)cascades play a crucial role in plant defense against viruses.However,the mechanisms that underlie the activation of MAPK cascades in response to...Increasing evidence suggests that mitogen-activated protein kinase(MAPK)cascades play a crucial role in plant defense against viruses.However,the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear.In this study,we discovered that phosphatidic acid(PA)repre-sents a major class of lipids that respond to Potato virus Y(PVY)at an early stage of infection.We identified NbPLDa1(Nicotiana benthamiana phospholipase Da1)as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role.6K2 of PVY interacts with NbPLDa1,lead-ing to elevated PA levels.In addition,NbPLDa1 and PA are recruited by 6K2 to membrane-bound viral repli-cation complexes.On the other hand,6K2 also induces activation of the MAPK pathway,dependent on its interaction with NbPLDa1 and the derived PA.PA binds to WIPK/SIPK/NTF4,prompting their phosphoryla-tion of WRKY8.Notably,spraying with exogenous PA is sufficient to activate the MAPK pathway.Knock-down of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA.6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDa1 and induced the activation of MAPK-mediated immunity.Loss of function of NbPLDa1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation.Thus,activation of MAPK-mediated immunity by NbPLDa1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.展开更多
基金supported by grants from the National Natural Science Foundation of China(31901835)the Science and Technology Planning Project of Henan Province of China(212102110145)the International(Regional)Cooperation and Exchange Program of the National Natural Science Foundation of China(31961143018).
文摘Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.
基金supported by the grants from the National Natural Science Foundation of China(U2004140)the Henan Provincial Science and Technology Major Project,China(221100110100)。
文摘Hyphal fusion(anastomosis)is a common process serving many important functions at various developmental stages in the life cycle of ascomycetous fungi.However,the biological roles and molecular mechanisms in plant pathogenic fungi were widely unknown.In this study,a hyphal fusion protein FpHam-2 was screened from a T-DNA insertion mutant library of Fusarium pseudograminearum,and FpHam-2 interacts with another 2 hyphal fusion protein homologues FpHam-3 and FpHam-4.Each of these 3 genes deletion mutant revealed in similar defective phenotypes compared with the WT and complemented strains,including reduction in growth rate,defects in hyphal fusion and conidiation,more sensitive for cell membrane,cell wall and oxidative stress responses,and decreased in virulence.The yeast two-hybrid assay was used to identify that FpHam-2 interacts with 3 autophagy-related proteins,including FpAtg3,FpAtg28 and FpAtg33.Furthermore,FpHam-2-deletion mutant showed decreased accumulation of autophagic bodies in hypha.In conclusion,FpHam-2,FpHam-3 and FpHam-4 have an essential role for hyphal fusion and regulating the growth,conidiation and virulence in F.pseudograminearum.
基金funded by the National Natural Science Foundation of China(31801707)the Key Projects of Science and Technology Research in Henan Province(182102110470)+3 种基金the Plant Protection of Key Discipline Project of Henan province(107020219001/005)the National Key Research and Development Program of China(2016YFD0300203-3)First-Class Postdoctoral Research Grant in Henan Province(001701038)the Science-Technology Foundation for High Level Talent of Henan Institute of Science and Technology(2015028).
文摘Whitefly-transmitted begomoviruses are economically important plant pathogens that cause severe problems in many crop plants,such as tomato,papaya,cotton,and tobacco.Tomato yellow leaf curl virus(TYLCV)is a typical monopartite begomovirus that has been extensively studied,but methods that can efficiently control begomoviruses are still scarce.In this study,we combined artificial microRNA(amiRNA)-mediated silencing technology and clay nanosheetmediated delivery by spraying and developed a method for efficiently preventing TYLCV infection in tomato plants.We designed three amiRNAs that target different regions of TYLCV to silence virus-produced transcripts.Three plant expression vectors expressing pre-amiRNAs were constructed,and recombinant plasmid DNAs(pDNAs)were loaded onto nontoxic and degradable layered double hydroxide(LDH)clay nanosheets.LDH nanosheets containing multiple pDNAs were sprayed onto plant leaves.We found that the designed amiRNAs were significantly accumulated in leaves 7 days after spraying,while the pDNAs were sustainably detected for 35 days after the spray,suggesting that the LDH nanosheets released pDNAs in a sustained manner,protected pDNAs from degradation and efficiently delivered pDNAs into plant cells.Importantly,when the LDH nanosheets coated with pDNAs were sprayed onto plants infected by TYLCV,both the disease severity and TYLCV viral concentration in sprayed plants were significantly decreased during the 35 days,while the levels of H_(2)O_(2) were significantly increased in those plants.Taken together,these results indicate that LDH nanosheets loaded with pDNAs expressing amiRNAs can be a sustainable and promising tool for begomovirus control.
基金supported by the Agricultural Science and Technology Innovation Program of Jilin Province,“Precise identification and QTL location of cold resistance of new apple germplasm”(program number,CXGC2017JQ020)“Phylogenetic reconstruction technique and gene family reconstruction technique of Malus plants”(program number,C8223001602).
文摘Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter.Apple(Malus domestica Borkh.)is a cold-tolerant fruit tree,and the cold tolerance of its bark is important for its survival at low temperatures.However,little is known about the gene activity related to its freezing tolerance.To better understand the gene expression and regulation properties of freezing tolerance in dormant apple trees,we analyzed the transcriptomic divergences in the bark from 1-year-old branches of two apple cultivars,“Golden Delicious”(G)and“Jinhong”(H),which have different levels of cold resistance,under chilling and freezing treatments.“H”can safely overwinter below−30℃in extremely low-temperature regions,whereas“G”experiences severe freezing damage and death in similar environments.Based on 28 bark transcriptomes(from the epidermis,phloem,and cambium)from 1-year-old branches under seven temperature treatments(from 4 to−29°C),we identified 4173 and 7734 differentially expressed genes(DEGs)in“G”and“H”,respectively,between the chilling and freezing treatments.A gene coexpression network was constructed according to this expression information using weighted gene correlation network analysis(WGCNA),and seven biologically meaningful coexpression modules were identified from the network.The expression profiles of the genes from these modules suggested the gene regulatory pathways that are responsible for the chilling and freezing stress responses of“G”and/or“H.”Module 7 was probably related to freezing acclimation and freezing damage in“H”at the lower temperatures.This module contained more interconnected hub transcription factors(TFs)and cold-responsive genes(CORs).Modules 6 and 7 contained C-repeat binding factor(CBF)TFs,and many CBF-dependent homologs were identified as hub genes.We also found that some hub TFs had higher intramodular connectivity(KME)and gene significance(GS)than CBFs.Specifically,most hub TFs in modules 6 and 7 were activated at the beginning of the early freezing stress phase and maintained upregulated expression during the whole freezing stress period in“G”and“H”.The upregulation of DEGs related to methionine and carbohydrate biosynthetic processes in“H”under more severe freezing stress supported the maintenance of homeostasis in the cellular membrane.This study improves our understanding of the transcriptional regulation patterns underlying freezing tolerance in the bark of apple branches.
基金supported by the“13th Five-Year”National Key R&D Program of China(No.2017YFC0702200)。
文摘Buildings contribute to almost 30%of total energy consumption worldwide.Developing building energy modeling programs is of great significance for lifecycle building performance assessment and optimization.Advances in novel building technologies,the requirements of high-performance computation,and the demands for multi-objective models have brought new challenges for building energy modeling software and platforms.To meet the increasing simulation demands,DeST 3.0,a new-generation building performance simulation platform,was developed and released.The structure of DeST 3.0 incorporates four simulation engines,including building analysis and simulation(BAS)engine,HVAC system engine,combined plant simulation(CPS)engine,and energy system(ES)engine,connected by air loop and water loop balancing iterations.DeST 3.0 offers numerous new simulation features,such as advanced simulation modules for building envelopes,occupant behavior and energy systems,cross-platform and compatible simulation kernel,FMI/FMU-based co-simulation functionalities,and high-performance parallel simulation architecture.DeST 3.0 has been thoroughly evaluated and validated using code verification,inter-program comparison,and case-study calibration.DeST 3.0 has been applied in various aspects throughout the building lifecycle,supporting building design,operation,retrofit analysis,code appliance,technology adaptability evaluation as well as research and education.The new generation building simulation platform DeST 3.0 provides an efficient tool and comprehensive simulation platform for lifecycle building performance analysis and optimization.
基金This work was supported in parts by the National Key R&D Program of China(2016YFC1305800,to J-Z.W.)the Special project of technological innovation of Hubei Province(2018ACA142,to J-Z.W.)+4 种基金the Natural Science Foundation of China(31730035,81721005,91949205,to J-Z.W.81901107,to J.Z.)the China Postdoctoral Science Foundation(2018M632872,to J.Z.)the Guangdong Provincial Key S&T Program(2018B030336001,to J-Z.W)the Science and Technology Program of Guizhou Province(Qiankehe zhicheng[2021]yiban 423,to J.Z.).We thank prof.Keqiang Ye for the generous gifts of hTau-N368 plasmid and the antibody,prof.Xiongwei Zhu for the help in electron microscopy,and all members in Wang-lab for helpful discussion and suggestions.
文摘Intraneuronal accumulation of hyperphosphorylated tau is a hallmark pathology shown in over twenty neurodegenerative disorders,collectively termed as tauopathies,including the most common Alzheimer's disease(AD).Therefore,selectively removing or reducing hyperphosphorylated tau is promising for therapies of AD and other tauopathies.Here,we designed and synthesized a novel DEPhosphorylation TArgeting Chimera(DEPTAC)to specifically facilitate the binding of tau to Ba-subunit-contalning protein phosphatase 2A(PP2A-Ba),the most active tau phosphatase in the brain.The DEPTAC exhibited high efficiency in dephosphorylating tau at multiple AD-associated sites and preventing tau accumulation both in vitro and in vivo.Further studies revealed that DEPTAC significantly improved microtubule assembly,neurite plasticity,and hippocampus-dependent learning and memory in transgenic mice with inducible overexpression of truncated and neurotoxic human tau N368.Our data provide a strategy for selective removal of the hyperphosphorylated tau,which sheds new light for the targeted therapy of AD and related-tauopathies.
基金supported by the National Natural Science Foundation of China (31901855)the Youth Talent Support Program of Henan Province (2020HYTP042)the Special Fund for Young Talents of Henan Agricultural University。
文摘Increasing evidence suggests that mitogen-activated protein kinase(MAPK)cascades play a crucial role in plant defense against viruses.However,the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear.In this study,we discovered that phosphatidic acid(PA)repre-sents a major class of lipids that respond to Potato virus Y(PVY)at an early stage of infection.We identified NbPLDa1(Nicotiana benthamiana phospholipase Da1)as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role.6K2 of PVY interacts with NbPLDa1,lead-ing to elevated PA levels.In addition,NbPLDa1 and PA are recruited by 6K2 to membrane-bound viral repli-cation complexes.On the other hand,6K2 also induces activation of the MAPK pathway,dependent on its interaction with NbPLDa1 and the derived PA.PA binds to WIPK/SIPK/NTF4,prompting their phosphoryla-tion of WRKY8.Notably,spraying with exogenous PA is sufficient to activate the MAPK pathway.Knock-down of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA.6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDa1 and induced the activation of MAPK-mediated immunity.Loss of function of NbPLDa1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation.Thus,activation of MAPK-mediated immunity by NbPLDa1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.