Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ...Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.展开更多
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit...Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles).展开更多
Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shr...Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shrinks during the lithiation/delithiation process,further leading to low cycle stability.Efforts to mitigate the adverse effects caused by volume expansion such as robust binder matrix,Coreshell structure,etc.,inevitably affect the electronic conductivity within the electrode.Herein,a high conductivity and elasticity Si anode(Ni-P-SBR(styrene-butadiene rubber)@Si)was designed and fabricated via the Ni-P-SBR composite-electroless-plating process.In this design,the Si particles are surrounded by SBR polymer and Ni particles,where the SBR can adapt to the volume change and Ni particles can provide the electrode with high electronic conductivity.Therefore,the Ni-P-SBR@Si delivers a high initial capacity of 3470 m A h g-1and presents capacity retention of 49.4%within 200 cycles at 600 m A g-1.Additionally,a high capacity of 1153 m A h g-1can be achieved at 2000 m A g-1and can be cycled stably under bending conditions.This strategy provides feasible ideas to solve the key issues that limit the practical application of Si anodes.展开更多
Lithium-sulfur (Li-S) batteries have great potential as an electrochemical energy storage system because of the high theoretical energy density and acceptable cost of financial and environment.However,the shuttle effe...Lithium-sulfur (Li-S) batteries have great potential as an electrochemical energy storage system because of the high theoretical energy density and acceptable cost of financial and environment.However,the shuttle effect leads to severe capacity fading and low coulombic efficiency.Here,graphitic carbon nitride(g-C3N4) is designed and prepared via a feasible and simple method from trithiocyanuric acid (TTCA) to anchor the polysulfides and suppress the shuttle effect.The obtained g-C3N4 exhibits strong chemical interaction with polysulfides due to its high N-doping of 56.87 at%,which is beneficial to improve the cycling stability of Li-S batteries.Moreover,the novel porous framework and high specific surface area of g-C3N4 also provide fast ion transport and broad reaction interface of sulfur cathode,facilitating high capacity output and superior rate performance of Li-S batteries.As a result,Li-S batteries assembled with g-C3N4 can achieve high discharge capacity of 1200 mAh/g at 0.2 C and over 800 mAh/g is remained after 100 cycles with a coulombic efficiency more than 99.5%.When the C-rate rises to 5 C,the reversible capacity of Li-S batteries can still maintain at 607mAh/g.展开更多
Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such a...Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such as Li Mn O_(2)and Li Mn_(2)O_(4))as well as further complications from successive structure changes during cycling,low initial coulombic efficiency(such as Li-rich cathode)and oxidization of organic carbonate solvents at high charge potential(such as Li Ni0.5 Mn1.5 O4).Large amounts of efforts have been concentrated on resolving these issues towards practical applications,and many vital progresses have been carried out.Hence,the primary target of this review is focused on different proposed strategies and breakthroughs to enhance the rate performance and cycling stability of nanostructured Mn-based oxide cathode materials for Li-ion batteries,including morphology control,ion doping,surface coatings,composite construction.The combination of delicate architectures with conductive species represents the perspective ways to enhance the conductivity of the cathode materials and further buffer the structure transformation and strain during cycling.At last,based on the elaborated progress,several perspectives of Mn-based oxide cathodes are summarized,and some possible attractive strategies and future development directions of Mn-based oxide cathodes with enhanced electrochemical properties are proposed.The review will offer a detailed introduction of various strategies enhancing electrochemical performance and give a novel viewpoint to shed light on the future innovation in Mn-based oxide cathode materials,which benefits the design and construction of high-performance Mn-based oxide cathode materials in the future.展开更多
Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolyt...Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolytes due to Li dendrites and instability of the solid electrolyte interphase.Recent research demonstrated that the problem can be alleviated via tetraethoxysilane(TEOS)treated lithium metal to form a silicon oxide layer on the lithium surface,however,its reaction mechanism is controversial.Herein,we deeply explore the reaction mechanism between TEOS and Li and propose:Fresh Li can directly react with TEOS even though no lithium hydroxide exists on the lithium surface,and the participation of water will accelerate the reaction process.Moreover,it was found that the silicon oxide layer can promote the uniform deposition of lithium ions by providing lithiophilic nucleation sites,thereby achieving a long cycle life of Li metal batteries.展开更多
By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the a...By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The effect of bismuth (Bi) for both VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries (VFBs) has been investigated by directly introducing Bi on the surface of carbon felt (CF). The results show that Bi h...The effect of bismuth (Bi) for both VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries (VFBs) has been investigated by directly introducing Bi on the surface of carbon felt (CF). The results show that Bi has no catalytic effect for VO2+/VO2(+) redox couple. During the first charge process, Bi is oxidized to Bi3+ (never return back to Bi metal in the subsequent cycles) due to the low standard redox potential of 0.308 V (vs. SHE) for Bi3+/Bi redox couple compared with VO2+/VO2+ redox couple and Bi3+ exhibit no (or neglectable) electro-catalytic activity. Additionally, the relationship between Bi loading and electrochemical activity for V3+/V2+ redox couple was studied in detail. 2 wt% Bi-modified carbon felt (2%-BiCF) exhibits the highest electrochemical activity. Using it as negative electrode, a high energy efficiency (EE) of 79.0% can be achieved at a high current density of 160 mA/cm(2), which is 5.5% higher than the pristine one. Moreover, the electrolyte utilization ratio is also increased by more than 30%. Even the cell operated at 140 mA/cm(2) for over 300 cycles, the EE can reach 80.9% without obvious fluctuation and attenuation, suggesting excellent catalytic activity and electrochemical stability in VFBs. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The Youth Innovation Promotion Association(abbreviated as YIPA)of the Chinese Academy of Sciences(abbreviated as CAS)was established in 2011.It is an innovative measure for the comprehensive training of young science ...The Youth Innovation Promotion Association(abbreviated as YIPA)of the Chinese Academy of Sciences(abbreviated as CAS)was established in 2011.It is an innovative measure for the comprehensive training of young science and technology talents under the age of 35 by the CAS.The YIPA aims to organize and support the academic exchange and cooperation of young researchers of the CAS and to train a new generation of academic and technical leaders.By the end of 2018,the number of members of the YIPA had reached 3640,which is the core backbone of the young researchers of the CAS.The YIPA has a total of six discipline branches:mathematics science,chemistry and materials,life sciences,earth sciences,information and management,engineering and equipment.展开更多
This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition...This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition at low pressure and low energy is performed to avoid the generation of the interference phase of NbSe_(3).The composition,microstructure,and properties of the NbSe_(2)films are further tailored by controlling the sputtering current.At an appropriate current,the film changed from amorphous to crystalline,maintained a dense structure,and exhibited excellent comprehensive properties.Compared to the currently available electrical contact lubricating materials,the NbSe_(2)film exhibits a significant advantage under the combined vacuum and current-carrying conditions.The friction coefficient decreases from 0.25 to 0.02,the wear life increases more than seven times,and the electric noise reduces approximately 50%.展开更多
Li3N is an excellent zero-residue positive electrode pre-lithiation additive to offset the initial lithium loss in lithium-ion capacitors. However, Li3N has an intrinsic problem of poor compatibility with commonly use...Li3N is an excellent zero-residue positive electrode pre-lithiation additive to offset the initial lithium loss in lithium-ion capacitors. However, Li3N has an intrinsic problem of poor compatibility with commonly used aprotic polar solvents in electrode manufacture procedure due to its high reactivity with commonly used solvents like N-methy-2-pyrrolidone(NMP) and etc. It is the Valley of Death between research and large-scale commercialization of Li-ion capacitors using Li3N as prelithiation agent. In this work, Li3N containing electrode is prepared by a commercially adoptable route for the first time, using N,Ndimethylformamide(DMF) to homogenate the electrode slurry. The DMF molecular stabilizing mechanism is confirmed via experiment analysis and DFT simulation, indicating that the dehydrogenation energy for DMF is obviously larger than other commonly used solvents such as NMP and etc. The soft package lithium-ion capacitors(LIC250) with only 12 wt% Li3N addition in AC positive electrode exhibits excellent rate capability, cyclic stability and ultrahigh specific energy. Its specific energy is 2.3 times higher than the Li3N-free devices, with energy retention as high as 90% after 10,000 cycles.展开更多
Development of high-voltage electrolytes with non-flammability is significantly important for future energy storage devices.Aqueous electrolytes are inherently non-flammable,easy to handle,and their electrochemical st...Development of high-voltage electrolytes with non-flammability is significantly important for future energy storage devices.Aqueous electrolytes are inherently non-flammable,easy to handle,and their electrochemical stability windows(ESWs)can be considerably expanded by increasing electrolyte concentrations.However,further breakthroughs of their ESWs encounter bottlenecks because of the limited salt solubility,leading to that most of the high-energy anode materials can hardly function reversibly in aqueous electrolytes.Here,by introducing a non-flammable ionic liquid as co-solvent in a lithium salt/water system,we develop a"water in salt/ionic liquid"(WiSIL)electrolyte with extremely low water content.In such WiSIL electrolyte,commercial niobium pentoxide(Nb2O5)material can operate at a low potential(-1.6 V versus Ag/AgCl)and contribute its full capacity.Consequently,the resultant Nb2O5-based aqueous lithium-ion capacitor is able to operate at a high voltage of 2.8 V along with long cycling stability over 3000 cycles,and displays comparable energy and power performance(51.9 Wh kg^-1 at 0.37 kW kg^-1 and 16.4 Wh kg^-1 at 4.9 kW kg^-1)to those using non-aqueous electrolytes but with improved safety performance and manufacturing efficiency.展开更多
Flexible and Personalizable battery is a promising candidate for energy storage, but suffers from the weldablity and large-scale producibility of the electrode. To address the issues, we design a nickel foam catalyzed...Flexible and Personalizable battery is a promising candidate for energy storage, but suffers from the weldablity and large-scale producibility of the electrode. To address the issues, we design a nickel foam catalyzed electroless deposition (NFED) derived 3D-metal-pattern embroidered electrodes. This is the first attempt to utilize this type of electrode in battery field. It is found that the current collector can be embroidered on any selected areas of any complex-shape electrodes, with high controllability and economical feasibility. As a result, the electronic conductivity of the flexible electrodes can be improved by nearly one order of magnitude, which can be easily and firmly weldded to the metal tab using the industry generic ultrasonic heating process. The embroidered electrodes could substantially promote the electrochemical performance under bending deformation, with both Li-S and Li-Li FePO4batteries as the models. This innovation is also suitable to embroider all the VIII group elements on any electrodes with personalized shapes, which is widely attractive for the development of next generation flexible and personalizable energy storage devices.展开更多
基金supported by the CAS Project of Young Scientists in Basic Research(YSBR-058)the National Natural Science Foundation of China(22279135)+2 种基金the Outstanding Youth Foundation of Liaoning Province(2023JH3/10200019)the Dalian Science and Technology Innovation Fund(2023JJ11CG004)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(YIICE E411010316)。
文摘Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.
基金supported by the National Natural Science Foundation of China(Nos.51673199,51972301,51677176)the Youth Innovation Promotion Association of CAS(2015148,Y201940)+2 种基金the Youth Innovation Foundation of DICP(ZZBS201615,ZZBS201708)the Dalian Outstanding Young Scientific Talent(2018RJ03)the National Key Research and Development Project(2019YFA0705600)。
文摘Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles).
基金financial support from the National Natural Science Foundation of China(No.51673199,51972301)the Youth Innovation Promotion Association of CAS(2015148)+2 种基金the Youth Innovation Foundation of DICP(ZZBS201615,ZZBS201708)the Dalian Outstanding Young Scientific Talent(2018RJ03)the National Key Research and Development Project(2019YFA0705600)。
文摘Silica-based anode is widely employed for high energy density Li-ion batteries owing to their high theoretical specific capacity(4200 m A h g-1).However,it is always accompanied by a huge volume expansion(300%)and shrinks during the lithiation/delithiation process,further leading to low cycle stability.Efforts to mitigate the adverse effects caused by volume expansion such as robust binder matrix,Coreshell structure,etc.,inevitably affect the electronic conductivity within the electrode.Herein,a high conductivity and elasticity Si anode(Ni-P-SBR(styrene-butadiene rubber)@Si)was designed and fabricated via the Ni-P-SBR composite-electroless-plating process.In this design,the Si particles are surrounded by SBR polymer and Ni particles,where the SBR can adapt to the volume change and Ni particles can provide the electrode with high electronic conductivity.Therefore,the Ni-P-SBR@Si delivers a high initial capacity of 3470 m A h g-1and presents capacity retention of 49.4%within 200 cycles at 600 m A g-1.Additionally,a high capacity of 1153 m A h g-1can be achieved at 2000 m A g-1and can be cycled stably under bending conditions.This strategy provides feasible ideas to solve the key issues that limit the practical application of Si anodes.
基金the financial support from the National Natural Science Foundation of China(Nos.51673199 and 51677176)Youth Innovation Promotion Association of CAS(2015148)+1 种基金Innovation Foundation of DICP(ZZBS201615,ZZBS201708)Dalian Science and Technology Star Program(2016RQ026)。
文摘Lithium-sulfur (Li-S) batteries have great potential as an electrochemical energy storage system because of the high theoretical energy density and acceptable cost of financial and environment.However,the shuttle effect leads to severe capacity fading and low coulombic efficiency.Here,graphitic carbon nitride(g-C3N4) is designed and prepared via a feasible and simple method from trithiocyanuric acid (TTCA) to anchor the polysulfides and suppress the shuttle effect.The obtained g-C3N4 exhibits strong chemical interaction with polysulfides due to its high N-doping of 56.87 at%,which is beneficial to improve the cycling stability of Li-S batteries.Moreover,the novel porous framework and high specific surface area of g-C3N4 also provide fast ion transport and broad reaction interface of sulfur cathode,facilitating high capacity output and superior rate performance of Li-S batteries.As a result,Li-S batteries assembled with g-C3N4 can achieve high discharge capacity of 1200 mAh/g at 0.2 C and over 800 mAh/g is remained after 100 cycles with a coulombic efficiency more than 99.5%.When the C-rate rises to 5 C,the reversible capacity of Li-S batteries can still maintain at 607mAh/g.
基金financially supported by the National Natural Science Foundation of China(no.51672120)the Scientific Research Project of Mudanjiang Normal University(no.1355JG014)+1 种基金the Natural Science Foundation of Hebei Province of China(no.B2020501003)the Fundamental Research Funds for the Central Universities(no.N2023030)。
文摘Mn-based oxides have been regarded as a promising family of cathode materials for high-performance lithium-ion batteries,but the practical applications have been limited because of severe capacity deterioration(such as Li Mn O_(2)and Li Mn_(2)O_(4))as well as further complications from successive structure changes during cycling,low initial coulombic efficiency(such as Li-rich cathode)and oxidization of organic carbonate solvents at high charge potential(such as Li Ni0.5 Mn1.5 O4).Large amounts of efforts have been concentrated on resolving these issues towards practical applications,and many vital progresses have been carried out.Hence,the primary target of this review is focused on different proposed strategies and breakthroughs to enhance the rate performance and cycling stability of nanostructured Mn-based oxide cathode materials for Li-ion batteries,including morphology control,ion doping,surface coatings,composite construction.The combination of delicate architectures with conductive species represents the perspective ways to enhance the conductivity of the cathode materials and further buffer the structure transformation and strain during cycling.At last,based on the elaborated progress,several perspectives of Mn-based oxide cathodes are summarized,and some possible attractive strategies and future development directions of Mn-based oxide cathodes with enhanced electrochemical properties are proposed.The review will offer a detailed introduction of various strategies enhancing electrochemical performance and give a novel viewpoint to shed light on the future innovation in Mn-based oxide cathode materials,which benefits the design and construction of high-performance Mn-based oxide cathode materials in the future.
基金the financial support from the National Natural Science Foundation of China(Nos.51673199,51972301,51677176)Youth Innovation Promotion Association of CAS(2015148)+2 种基金Youth Innovation Foundation of DICP(ZZBS201615,ZZBS201708)Dalian Outstanding Young Scientific Talent(2018RJ03)National Key Research and Development Project(2019YFA0705600)。
文摘Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolytes due to Li dendrites and instability of the solid electrolyte interphase.Recent research demonstrated that the problem can be alleviated via tetraethoxysilane(TEOS)treated lithium metal to form a silicon oxide layer on the lithium surface,however,its reaction mechanism is controversial.Herein,we deeply explore the reaction mechanism between TEOS and Li and propose:Fresh Li can directly react with TEOS even though no lithium hydroxide exists on the lithium surface,and the participation of water will accelerate the reaction process.Moreover,it was found that the silicon oxide layer can promote the uniform deposition of lithium ions by providing lithiophilic nucleation sites,thereby achieving a long cycle life of Li metal batteries.
基金financial support from the Natural Science Foundation of China(no.51177156/E0712)
文摘By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金the financial support from the China Natural Science Foundation(Grant nos.51403209,21406221,21206158,21476224,21406219 and 51361135701)the Outstanding Young Scientist Foundation,Chinese Academy of Sciences(CAS)+2 种基金Supported by the Key Research Program of the Chinese Academy of Sciences(KG2D-EW-602-2)Science and Technology Service Network Initiative(KFJ-EW-STS-108)Dalian Municipal Outstanding Young Talent Foundation(2014J11JH131)
文摘The effect of bismuth (Bi) for both VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries (VFBs) has been investigated by directly introducing Bi on the surface of carbon felt (CF). The results show that Bi has no catalytic effect for VO2+/VO2(+) redox couple. During the first charge process, Bi is oxidized to Bi3+ (never return back to Bi metal in the subsequent cycles) due to the low standard redox potential of 0.308 V (vs. SHE) for Bi3+/Bi redox couple compared with VO2+/VO2+ redox couple and Bi3+ exhibit no (or neglectable) electro-catalytic activity. Additionally, the relationship between Bi loading and electrochemical activity for V3+/V2+ redox couple was studied in detail. 2 wt% Bi-modified carbon felt (2%-BiCF) exhibits the highest electrochemical activity. Using it as negative electrode, a high energy efficiency (EE) of 79.0% can be achieved at a high current density of 160 mA/cm(2), which is 5.5% higher than the pristine one. Moreover, the electrolyte utilization ratio is also increased by more than 30%. Even the cell operated at 140 mA/cm(2) for over 300 cycles, the EE can reach 80.9% without obvious fluctuation and attenuation, suggesting excellent catalytic activity and electrochemical stability in VFBs. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘The Youth Innovation Promotion Association(abbreviated as YIPA)of the Chinese Academy of Sciences(abbreviated as CAS)was established in 2011.It is an innovative measure for the comprehensive training of young science and technology talents under the age of 35 by the CAS.The YIPA aims to organize and support the academic exchange and cooperation of young researchers of the CAS and to train a new generation of academic and technical leaders.By the end of 2018,the number of members of the YIPA had reached 3640,which is the core backbone of the young researchers of the CAS.The YIPA has a total of six discipline branches:mathematics science,chemistry and materials,life sciences,earth sciences,information and management,engineering and equipment.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.51775537)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.Y202084)for financial support.
文摘This study demonstrates that magnetron-sputtered NbSe_(2)film can be used as a lubricant for space current-carrying sliding contact,which accommodates both metal-like conductivity and MoS_(2)-like lubricity.Deposition at low pressure and low energy is performed to avoid the generation of the interference phase of NbSe_(3).The composition,microstructure,and properties of the NbSe_(2)films are further tailored by controlling the sputtering current.At an appropriate current,the film changed from amorphous to crystalline,maintained a dense structure,and exhibited excellent comprehensive properties.Compared to the currently available electrical contact lubricating materials,the NbSe_(2)film exhibits a significant advantage under the combined vacuum and current-carrying conditions.The friction coefficient decreases from 0.25 to 0.02,the wear life increases more than seven times,and the electric noise reduces approximately 50%.
基金the National Natural Science Foundation of China(51673199 and 51677176)Youth Inn ovation Promotion Association of Chinese Academy of Sciences(2015148)+4 种基金Dalian National Laboratory for Clean Energy(DNL180307)Innovation Foundation of Dalian Institute of Chemical PhysicsChinese Academy of Sciences(ZZBS201615 and ZZBS201708)Dalian Science and Technology Star Program(2016RQ026)The authors also thank Lei Shi for the helpful discussion on Li3N related reaction.
文摘Li3N is an excellent zero-residue positive electrode pre-lithiation additive to offset the initial lithium loss in lithium-ion capacitors. However, Li3N has an intrinsic problem of poor compatibility with commonly used aprotic polar solvents in electrode manufacture procedure due to its high reactivity with commonly used solvents like N-methy-2-pyrrolidone(NMP) and etc. It is the Valley of Death between research and large-scale commercialization of Li-ion capacitors using Li3N as prelithiation agent. In this work, Li3N containing electrode is prepared by a commercially adoptable route for the first time, using N,Ndimethylformamide(DMF) to homogenate the electrode slurry. The DMF molecular stabilizing mechanism is confirmed via experiment analysis and DFT simulation, indicating that the dehydrogenation energy for DMF is obviously larger than other commonly used solvents such as NMP and etc. The soft package lithium-ion capacitors(LIC250) with only 12 wt% Li3N addition in AC positive electrode exhibits excellent rate capability, cyclic stability and ultrahigh specific energy. Its specific energy is 2.3 times higher than the Li3N-free devices, with energy retention as high as 90% after 10,000 cycles.
基金supported by the National Natural Science Foundations of China(21573265 and 21673263)the Zhaoqing Municipal Science and Technology Bureau(2019K038)+2 种基金the Key Cultivation Projects of the Institute in 13th Five-Yearthe Instruments Function Development&Technology Innovation Project of Chinese Academy of Sciences(2020g105)the Western Young Scholars Foundations of Chinese Academy of Sciences。
文摘Development of high-voltage electrolytes with non-flammability is significantly important for future energy storage devices.Aqueous electrolytes are inherently non-flammable,easy to handle,and their electrochemical stability windows(ESWs)can be considerably expanded by increasing electrolyte concentrations.However,further breakthroughs of their ESWs encounter bottlenecks because of the limited salt solubility,leading to that most of the high-energy anode materials can hardly function reversibly in aqueous electrolytes.Here,by introducing a non-flammable ionic liquid as co-solvent in a lithium salt/water system,we develop a"water in salt/ionic liquid"(WiSIL)electrolyte with extremely low water content.In such WiSIL electrolyte,commercial niobium pentoxide(Nb2O5)material can operate at a low potential(-1.6 V versus Ag/AgCl)and contribute its full capacity.Consequently,the resultant Nb2O5-based aqueous lithium-ion capacitor is able to operate at a high voltage of 2.8 V along with long cycling stability over 3000 cycles,and displays comparable energy and power performance(51.9 Wh kg^-1 at 0.37 kW kg^-1 and 16.4 Wh kg^-1 at 4.9 kW kg^-1)to those using non-aqueous electrolytes but with improved safety performance and manufacturing efficiency.
基金This work was financially supported by the National Natural Science Foundation of China(51673199,51677176)Youth Innovation Promotion Association of CAS(2015148)+1 种基金Innovation Foundation of DICP(ZZBS201615,ZZBS201708)Dalian Science and Technology Star Program(2016RQ026).
文摘Flexible and Personalizable battery is a promising candidate for energy storage, but suffers from the weldablity and large-scale producibility of the electrode. To address the issues, we design a nickel foam catalyzed electroless deposition (NFED) derived 3D-metal-pattern embroidered electrodes. This is the first attempt to utilize this type of electrode in battery field. It is found that the current collector can be embroidered on any selected areas of any complex-shape electrodes, with high controllability and economical feasibility. As a result, the electronic conductivity of the flexible electrodes can be improved by nearly one order of magnitude, which can be easily and firmly weldded to the metal tab using the industry generic ultrasonic heating process. The embroidered electrodes could substantially promote the electrochemical performance under bending deformation, with both Li-S and Li-Li FePO4batteries as the models. This innovation is also suitable to embroider all the VIII group elements on any electrodes with personalized shapes, which is widely attractive for the development of next generation flexible and personalizable energy storage devices.